Biochemistry

Pavel Pestryakov

Novosibirsk State University Institute of chemical biology and fundamental medicine, SB RAS

+7(913)892-3045 Pavel.pestryakov@niboch.nsc.ru

LIPIDS

According to Bloom LIPIDS characteristics:

- They are insoluble in water.
- Solubility in one or more organic solvents, such as ether, chloroform, benzene, acetone, etc, so called fat solvents.
- Some relationship to the fatty acids as esters either actual or potential.
- Possibility of utilization by living organisms.

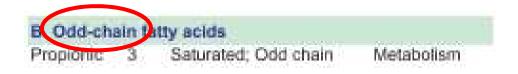
Classification (chemical)

1. Simple lipids. They are esters of **fatty acids** with **glycerol** or other higher alcohols.

2. Compound lipids. They are **fatty acids** esterified with alcohol; but in addition they contain other groups. Depending on these extra groups, they are subclassified.

- a. Phospholipids, containing phosphoric acid.
- b. Non-phosphorylated lipids.

3. Derived lipids. They are compounds which are derived from lipids or precursors of lipids, e.g. fatty acids, steroids, cholesterol.


4. Lipids complexed to other compounds.

LIPIDS Structure - FATTY ACIDS – DERIVED LIPIDS

- 1. Lipid component
- 2. Derived lipid

SATURATED (-anoic)

Common name	No carl ator		Occurrence
A Even ch	iain :	Saturated fatty acids	
Acetic	2	Saturated; small chain	Vinegar
Butyric	-4	do	Butter
Caproic	6	do	Butter
Capric	10	do	Caconut oil
Lauric	12	do	Coconut oil
Myristic	14	do	Coconut oil
Palmitic	16	Saturated; long chain	Body fat
Stearic	18	do	do
Arachidic	20	do Peanu	t oil (Arachis oil

Fatty acids are aliphatic carboxylic acids and have the general formula, R—CO—OH, where COOH (carboxylic group) represents the functional group. Obtained by fat hydrolysis.

> Acetic acid CH₃—COOH Butyric acid CH₃(CH₂)₂—COOH Palmitic acid CH₃—(CH₂)₁₄—COOH Stearic acid CH₃—(CH₂)₁₆—COOH

Acetic (C=2) and butyric (C=4) are involved in the basics of metabolic intermediates.

Palmitic (C=16) and stearic (C=18) – most abundant in body fat.

Most of natural lipids consist even FA. Odd FA can be found in microbiota and milk.

Short chain <7 Long chain >15 Very long >23

LIPIDS Structure - FATTY ACIDS

UNSATURATED (-enoic)

name	No carb atom		Occurrence
C Even cha	in U	nsaturated fatty acids	
Palmitoleic	16	Monounsaturated (w7)	Body fat
Oleic	18	do (co 9)	do
Erucic	22	do (m 9)	Mustard oil
Nervonic	24	do (co 9)	Brain lipids
Linoleic	18	2 double bonds (cs 6)	Vegetable oils
Linolenic	18	3 double bonds (cd 3)	do
Arachidonic	20	4 double bonds (cs 6)	Vegetable oils
Timnodonic	20	eicosa pentaenoic (m 3)	Fish oils, brain
Clupanodoni	c 22	docosa pentaenoic (ω 3)	Fish oils, brain
Cervonic	22	docosa hexaenoic (w 3)	Fish oils, brain

Linolenic (
$$C_{18}$$
) A9, 12, 15 (three double bonds) (∞ 3 family)

 $CH_3 - CH_2 - CH = CH - CH_2 - CH = CH - (CH_2)_T - COOH$

18
 ∞ 3
15
12
9
1

Arachidonic (C36) A5, 8, 11, 14 (four double bonds) (co6 family)

Each animal species will have characteristic pattern of fatty acid composition. Thus human **body fat** contains 50% oleic acid, 25% palmitic acid 10% linoleic and 5% stearic acid.

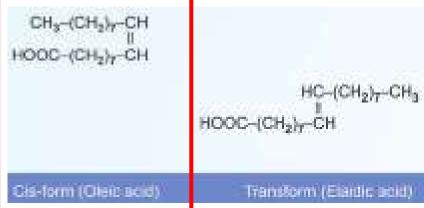
Internal classification:

- Monounsaturated
- Polyunsaturated

Polyunsaturated linoleic and linolenic are ESSENTIAL (EFA) Polyunsaturated arachidonic can be synthesized if essential FA are in diet.

Linoleic (C₁₈) Δ 9, 12 (two double bonds) (ω 8 family) CH₃-(CH₂)4-CH = CH-CH₂-CH = CH-(CH₂)₇ - COOH 18 ω 9 12 9 1

> W (omega) – numbers from methyl end, not from carboxylic (w3 w6 w9)


LIPIDS Structure - FATTY ACIDS

UNSATURATED (-enoic)

name	No carb atom		Occurrence
C. Even cha	in, U	nsaturated fatty acids	
Palmitoleic	16	Monounsaturated (w7)	Body fat
Oleic	18	do (co 9)	do
Erucic	22	do (m 9)	Mustard oil
Nervonic	24	do (co 9)	Brain lipids
Linoleic	18	2 double bonds (cs 6)	Vegetable oils
Linolenic	18	3 double bonds (cd 3)	do
Arachidonio	: 20	4 double bonds (cs 6)	Vegetable oils
Timnodonic	20	eicosa pentaenoic (m 3)	Fish oils, brain
Clupanodoni	c 22	docosa pentaenoic (ω 3)	Fish oils, brain
Cervonic	22	docosa hexaenoic (m 3)	Fish oils, brain

Name	그는 것은 것은 것은 것은 것을 받았다.	Mono-unsaturated fatty acids(%)	PUFA (%)	
Coconut oil	(*)86	12	2	
Sunflower oil	12	24	64	
Palm oil	42	52	6	

Since we have double bond in the structure – there should be isomers about it!

Natural – CIS- (some little TRANS- during the metabolism)

??? Healthy = cis-, unhealthy = trans-

POSSIBLE HEALTH ISSUES:

Trans fatty acids adversely affect multiple risk factors, including plasma lipids and lipoproteins, systemic inflammation, endothelial dysfunction, insulin resistance.

Common name	No carbon atoms	Chemical na	ature	Occurrence
BRANC	HED			
D. Branche	d fatty aci	ds		
Iso valeric :	acid 5 Bran	nched	Metabolic	intermediate
MODIF	IED			
E. Hydroxy	fatty acids			
Cerebronic	acid 24 Hy	droxy acid	∂ E	Brain lipids
F. methy	l fatty ac	ids		
G. Cyclic	fatty aci	ds		
Chauln	noogric a	acid - from	chaulm	noogra seed
	carpic ac	id		_

Both of them have been used earlier for long time for treatment of leprosy.

LIPIDS PROPERTIES - FATTY ACIDS

1. Hydrogenation of unsaturated – usually solidifies oil

(+)2H (+)2H (+)2H Linolenic \longrightarrow Linoleic \longrightarrow Oleic \longrightarrow Stearic

2. Halogenation of unsaturated

Oleic acid + $I_{\scriptscriptstyle 2} \rightarrow$ Di-iodo oleic acid

The number of halogen atoms taken up will depend on the number of double bonds and is an index of the degree of unsaturation. (See iodine number, under triglycerides).

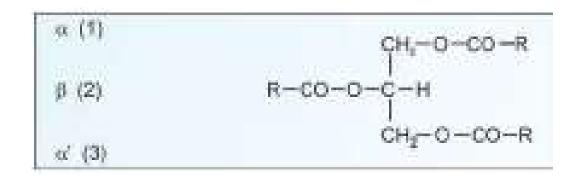
4. Salt formation (Na/K salts - soaps)

 CH_3 —COOH + NaOH \rightarrow CH_3 —COONa + H_2O Ca/Mg soaps - insoluble

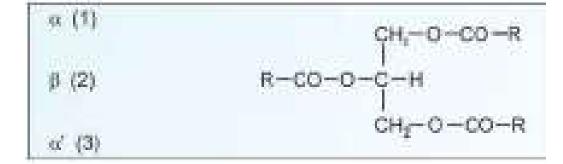
5. Esterification with alcohol

!! Mono-, di-, tri-gliceride

Triglycerids – neutral FAT


Since we have double bond in the structure – there should be chemistry about it!

3. Melting point


long chain saturated FA – solids at 25 unsaturated – stay longer as liquids The more unsaturated – the more thermoliquids

5. Oxidation

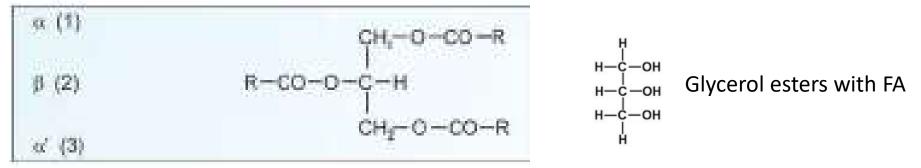
ENERGY in the body – partially by oxidation of FA autooxidation of unsaturated FA

SIMPLE LIPIDS – NEUTRAL FAT – triglycerides – triacyl glycerols

Glycerol esters with FA

i. Naturally occurring fats and oils are mixtures of triglycerides.

ii. If all the three hydroxyl groups of the glycerol are esterified to the same fatty acid, a **simple triacyl glycerol** is formed.


iii. A **mixed triglyceride** is formed, when different fatty acids are esterified to the hydroxyl groups of glycerol.

iv. Generally two hydroxyl groups are esterified to similar fatty acid and the third with a different one, e.g. 1, 3-dipalmitoyl-2-olein; 1-palmitoyl-2, 3-distearin, etc. When a unsaturated FA is present, it is commonly esterified to the 2nd or β carbon atom.

SIMPLE LIPIDS – WAXES = higher FA + big monohydroxy-alcohols

Long straight chains (60-100); Secretion of insects, leafes, plants; Uses in osmetics, polishes. (cetyl alcohol (C16H33OH), cholesterol, VitA/Vit D)

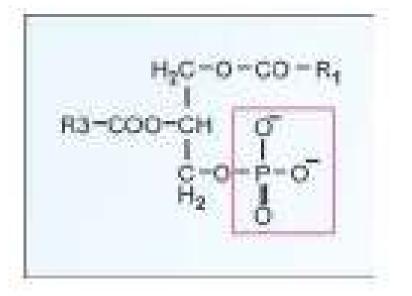
SIMPLE LIPIDS – NEUTRAL FAT – triglycerides – triacyl glycerols

STRUCTURE -

i. Naturally occurring fats and oils are mixtures of triglycerides.

ii. If all the three hydroxyl groups of the glycerol are esterified to the same fatty acid, a **simple triacyl glycerol** is formed.

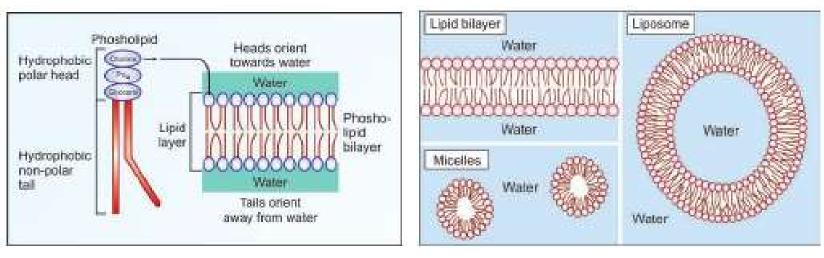
iii. A **mixed triglyceride** is formed, when different fatty acids are esterified to the hydroxyl groups of glycerol.


iv. Generally two hydroxyl groups are esterified to similar fatty acid and the third with a different one, e.g. 1, 3-dipalmitoyl-2-olein; 1-palmitoyl-2, 3-distearin, etc. When a unsaturated FA is present, it is commonly esterified to the 2nd or β carbon atom.

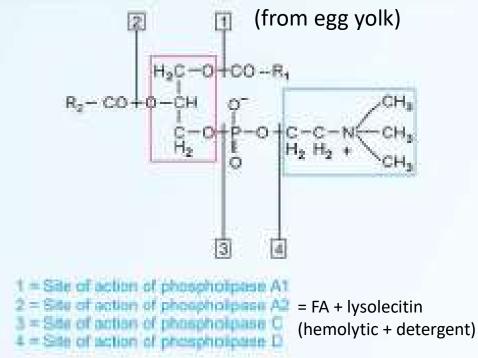
PROPERTIES -

- 1. insoluble in water OIL (unsaturated/short chains) or FAT (saturated long chain)
- 2. Serves as Energy storage (adipose tissue approx 10 kg triglycerides per 70 kg male)
- 3. Can be hydrolysed by lipases (sequentially to glycerol and 3 FA)
- 4. Can be hydrolysed by alkali saponification (to glycerol and soaps). Saponification number can give an idea about average molecular weight of FA in fat

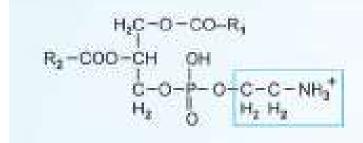
COMPOUND LIPIDS – Phospholipids


Simplest – phosphatidic acid = glycerol + 2 FA at C1 and C2 + PO4²⁻ at C3

Liposomes and drug delivery


Membranes (layers are formed) C>6

Since we have asymmetric atom – there should be stereoisomers. natural PL – belongs to L-



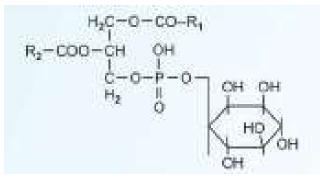
COMPLEX LIPIDS – Phospholipids –

1. Lecitin (phosphatidyl choline)

1. Cephalin (phosphatidyl ethanolamine)

Important biological property in biomembranes

Glycerol + 2 FA + Phosphate + Choline (usually R2 – polyunsaturated)


NITROGEN-CONTAINING PHOSPHOLIPID

CWITTERIONIC nature (pl 6.7)

Is digested by phospholipases (venoms)

Important biological property – Lung surfactant (dipalmitoyl lecithin, phosphatidyl glycerol, cholesterol and surfactant proteins A, B and C)

1. phosphatidyl inositol

COMPLEX LIPIDS – Phospholipids –

2. Plasmalogens

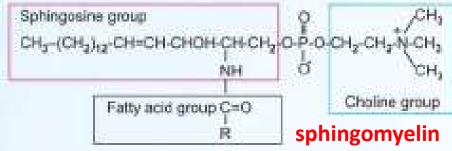
H2C-O-CH=CH-R1 R2-CO-O-CH OH C-O-P-O-CH2-CH2-NH2 H2 O

Glycerol + at C1 a-b unsaturated alcohol + FA at C2 + phosphate at C3 + (ethanolamine or choline) at phosphate Biomembranes of brain and muscle

Phosphatidic acid + Glycerol + phosphatidic acid

3. Phosphatidyl glycerol (cardiolipin)

Mitochondrial membrane! Low amount of cardiolipin = mt dysfunction == heart failure, hypothyroidism, myopathies.

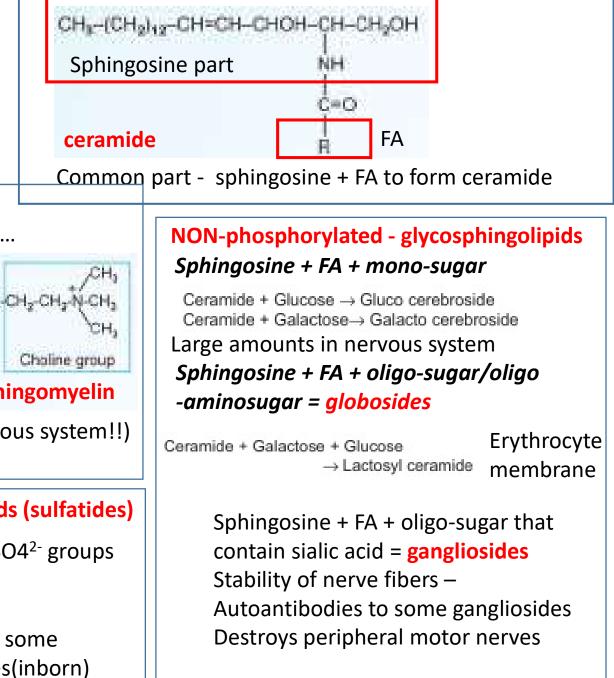

COMPLEX LIPIDS

4. SPHINGOLIPIDS:

- phosphosphingosides
- glycosphingolipids
- sulfatides

Phosphosphingosides

Sphingosine + FA + phosphate + ...



(biomembranes, especially nervous system!!) Variety, depending on FA

NON-phosphorylated – Sulfolipids (sulfatides)

Sphingosine + FA + oligosugar + SO4²⁻ groups Membranes of nervous tissue

Accumulation of SF in CNS under some conditions – lipid storage diseases(inborn)

LIPIDS Function

1. Storage form of **energy** (triglycerides)

2. Structural components of biomembranes (phospholipids and

cholesterol)

- 3. Metabolic regulators (steroid hormones and prostaglandins)
- 4. Act as surfactants, detergents and emulsifying agents (amphipathic lipids)
- 5. Act as electric insulators in neurons
- 6. Provide **insulation** against changes in external temperature (subcutaneous fat)
- 7. Give **shape** and contour to the **body**
- 8. Protect internal organs by providing a cushioning effect (pads of fat kidneys)
- 9. Help in absorption of fat soluble vitamins (A, D, E and K)
- 10. Improve taste and palatability of food.

11. Involved in metabolism – breakdown products are used to build other biomolecules

MEDICAL IMPORTANCE

1. Excessive fat deposits cause obesity. Truncal obesity is a risk factor for heart attack.

- 2. Abnormality in cholesterol and lipoprotein
- metabolism leads to atherosclerosis and
- cardiovascular diseases.

3. In diabetes mellitus, the metabolisms of fatty acids and lipoproteins are deranged, leading to ketosis.

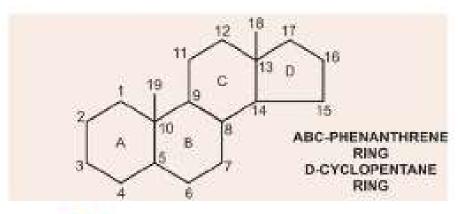
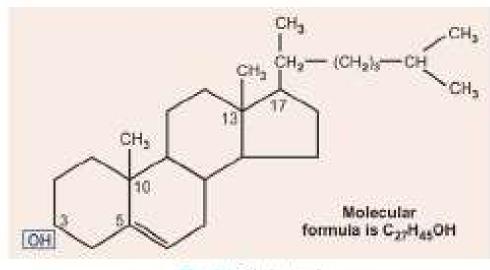



Fig. 4.3: Cyclopentanoperhydrophenanthrene nucleus

STEROIDS

Fig. 4.4: Cholesterol

Literature biochemistry

- 1. Lehninger Principles of Biochemistry (Nelson D.L., Cox M.M.)
- Principles and Techiniques of Biochemistry and Molecular Biology (Wilson K., Walker J.)