На правах рукописи

# Фирсова Алина Александровна

Разработка и валидация методик количественного определения физиологически активных веществ на основе камфоры, дегидроабиетиновой и усниновой кислот для фармакокинетических исследований

1.5.4 – биохимия

Автореферат диссертации на соискание ученой степени кандидата химических наук

Работа выполнена в Федеральном государственном бюджетном учреждении науки Новосибирский институт органической химии им. Н.Н. Ворожцова CO PAH

## Научный руководитель:

**Рогачев Артем Дмитриевич,** к.х.н., Федеральное государственное бюджетное учреждение науки Новосибирский институт органической химии им. Н.Н. Ворожцова СО РАН, г. Новосибирск, с.н.с.

## Официальные оппоненты:

**Дмитренок Павел Сергеевич,** д.х.н., чл.-кор. РАН, Федеральное государственное бюджетное учреждение науки Тихоокеанский институт биоорганической химии им. Г.Б. Елякова Дальневосточного отделения РАН, г. Владивосток, директор.

**Черноносов Александр Анатольевич**, д.х.н., Федеральное государственное бюджетное учреждение науки Институт химической биологии и фундаментальной медицины СО РАН, г. Новосибирск, в.н.с.

| <b>Центалович Юрий Павлович</b> , д.х.н., Федер ное учреждение науки Институт «Междунар СО РАН, г. Новосибирск, г.н.с.                             |                                     |                |
|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|----------------|
| Защита состоится «» На заседании диссертационного совета ИХБФ ской биологии и фундаментальной медицины спект академика Лаврентьева, 8, Новосибирск | M.02.01 при Инст<br>СО РАН по адрес | титуте химиче- |
| С диссертацией можно ознакомиться в библис логии и фундаментальной медицины СО РАН                                                                 |                                     |                |
| Автореферат разослан                                                                                                                               | «»                                  | 202_ г.        |
| Ученый секретарь диссертационного совета                                                                                                           | 6                                   |                |
| к.х.н., Пестряков П. Е.                                                                                                                            | The                                 |                |

## ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы исследования. Актуальность работы обусловлена ключевой ролью природных соединений и их структурных аналогов в создании новых лекарственных средств, что подтверждается их значительным вкладом в разработку препаратов для терапии социально значимых заболеваний, таких как онкологические, инфекционные и сердечно-сосудистые патологии [Atanas G. et. al. 2015; Newman D.J. et. al. 2016; Waltenberger B. et. al. 2016]. Ключевым этапом в разработке новых фармакологических веществ является переход от стадии in vitro к доклиническим исследованиям in vivo с использованием животных моделей. Результат проведения данного этапа напрямую зависит от наличия надёжных аналитических методов, позволяющих изучать фармакокинетику, распределение и метаболизм. Основой для таких исследований служит точное определение концентрации активного вещества и его метаболитов в биологических жидкостях и тканях.

Наиболее эффективным инструментом для решения данных задач являются биоаналитические методики, основанные на применении высокоэффективной жидкостной хроматографии с масс-спектрометрической детекцией (ВЭЖХ-МС/МС). Разработка и валидация таких методик, обеспечивающих необходимую селективность, точность и чувствительность анализа, представляет собой критически важную задачу, поскольку полученные с их помощью данные служат основой для расчёта фармакокинетических параметров, оптимизации лекарственной формы, режима дозирования и схемы введения препаратов.

В качестве объектов исследования в данной работе были выбраны три перспективных производных природных соединений, синтезированных в Лаборатории физиологически активных веществ НИОХ СО РАН, продемонстрировавших высокую биологическую активность в экспериментах *in vitro*. Камфецин — производное камфоры, проявляющее высокую активность в отношении вируса гриппа А/H1N1. Ранее была изучена его фармакокинетика при пероральном введении [Rogachev A. D. et. al. 2016], распределение по органам и идентифицированы основные метаболиты [Rogachev A. D. et. al. 2018]. Несмотря на наличие разработанных методик его анализа методами ГХ-МС [Sokolova A. S. et. al. 2018] и ВЭЖХ-МС/МС [Rogachev A. D. et. al. 2016], существующие методики имеют ряд ограничений, таких как низкая степень извлечения, что диктует необходимость расширения арсенала биоаналитических подходов, исследования возможности сбора и хранения биологических образцов для проведения клинических испытаний.

Соединение с лабораторным кодом KS-389 является производным дегидроабиетиновой кислоты. Оно проявило высокую ингибирующую активность в отношении фермента репарации ДНК TDP1 (IC $_{50}=0.1~\mu$ M) [Kovaleva K. et. al. 2021] и усиливало цитостатические свойства темозоломида на клеточных линиях глиобластомы U-87MG и SNB19 [Kovaleva K. et. al. 2021; Kovaleva K. et. al. 2019]. Для поиска оптимальной схемы введения и дозы необходимо изучить фармакокинетику агента, что в свою очередь требует разработки методик количественного анализа в биологических матрицах.

Соединение OL9-116 является производным усниновой кислоты [Luzina O. et. al. 2020], также ингибирует фермент репарации ДНК TDP1 (IC<sub>50</sub> = 0.16 µM) [Dyrkheeva N. S. et. al. 2021]. Вещество продемонстрировало низкую токсичность [Zakharenko A. et. al. 2016; Koldysheva E. V. et. al. 2019] и усиление противоопухолевого эффекта в комбинации с топотеканом в экспериментах in vivo [Luzina O. et. al. 2020], приводя к сокращению объема опухоли и метастазов до 98% у мышей с карциномой легких Льюис и карциномой Кребс-2 [Koldysheva E. V. et. al. 2019; Nikolin V. P. et. al. 2021]. Фармакокинетика данного агента до настоящего времени не была изучена, а методики количественного анализа ранее не были разработаны.

**Рис. 1.** Структурные формулы камфецина, производного дегидроабиетиновой кислоты KS-389 и производного усниновой кислоты OL9-116.

**Целью** данной работы являлась разработка и валидация методик с использованием метода высокоэффективной жидкостной хроматографии и масс-спектрометрической детекции для количественного определения камфецина, агентов KS-389 и OL9-116 в биологических жидкостях и тканях органов, а также исследование их стабильности, фармакокинетики и распределения.

В ходе работы решались следующие задачи:

- 1. Разработка и валидация методики количественного определения камфецина в плазме крови крыс с использованием метода ВЭЖХ-МС/МС, исследование его распределения между компонентами крови в различных условиях, а также исследование стабильности образцов сухих пятнен цельной крови, содержащих камфецин, при различных условиях хранения.
- 2. Разработка и валидация методик количественного определения агента KS-389 в цельной крови, мозге, печени и почках мышей и исследование фармакокинетики и распределения агента в крови и органах мыши при однократном внутрибрюшинном введении в дозе 5 мг/кг.
- 3. Разработка, валидация методик количественного определения агента OL9-116 в цельной крови, легких, печени и почках мышей, исследование фармакокинетики на мышах при однократном внутрижелудочном и внутрибрюшинном введении в различных дозах и распределения в органах здоровых мышей и мышей с перевитой карциномой легких Льюис.

Научная новизна исследования, теоретическая и научно-практическая значимость. В ходе исследования была оптимизирована методика коли-

чественного определения камфецина в сухих пятнах крови, что увеличило степень его извлечения из биологической матрицы и позволило снизить нижний предел количественного определения вещества. Впервые исследована стабильность образцов сухих пятнен крови, содержащих камфецин, при различных температурах и показано, что для их длительного хранения и/или транспортировки необходима глубокая заморозка.

Впервые изучено распределение камфецина между форменными элементами и плазмой крови в широком диапазоне концентраций. Доказано, что распределение вещества не зависит от температуры и гематокрита, а его адсорбция на форменных элементах крови обратима. Полученные результаты позволяют использовать плазму крови, а не цельную кровь, что может упростить и ускорить клинические испытания за счет исключения необходимости в сложной пробоподготовке.

В рамках проведенного исследования автором с использованием ВЭЖХ-МС/МС впервые были разработаны методики количественного определения агента OL9-116 в цельной крови и гомогенатах тканей легких, печени, почек мышей; агента KS-389 в цельной крови и гомогенатах тканей мозга, печени, почек мышей; камфецина в плазме крови крыс. Методики были валидированы согласно требованиям международных регуляторных документов FDA и ЕМА, что обеспечивает высокую точность и достоверность результатов. Описанные методики для количественного определения KS-389, OL9-116, камфецина в биологических жидкостях и тканях позволяют проводить доклинические и, при адаптации методик для анализа биологических жидкостей человека, клинические исследования с применением тандемной масс-спектрометрии. Разработанные методики пробоподготовки обеспечили возможность минимизации объема биоматериала, необходимого для анализа (до 10 мкл цельной крови), что существенно снижает инвазивность экспериментов и соблюдает принципы биоэтики в работе с лабораторными животными.

Впервые была исследована фармакокинетика и распределение производного дегидроабиетиновой кислоты, агента KS-389, у мышей с тяжелым комбинированным иммунодефицитом при однократном внутрибрюшинном введении и рассчитаны основные фармакокинетические параметры вещества. Впервые доказана способность KS-389 проникать через гематоэнцефалический барьер, что представляет собой значимый результат для разработки препаратов вспомогательной терапии для лечения онкологических заболеваний, включая глиомы.

Впервые была изучена фармакокинетика производного усниновой кислоты OL9-116 при внутрижелудочном введении животным в дозе 150 мг/кг и внутрибрюшинном введении в дозе 5 мг/кг. На основании полученных данных был произведен расчет основных фармакокинетических параметров, в результате анализа которых установлен пролонгированный эффект агента OL9-116. Впервые доказано, что внутрибрюшинное введение агента OL9-116 позволяет снизить дозу в 30 раз для достижения значений максимальной концентрации и площади под кривой, аналогичных внутрижелудочному введению. Использова-

ние полученных данных о фармакокинетике OL9-116 и опубликованных данных по фармакокинетике топотекана позволило повысить эффективность терапии карциномы легких Льюис в экспериментах *in vivo*.

Впервые было изучено распределение агента OL9-116 в легких, печени и почках мышей при внутрижелудочном введении агента в группах здоровых мышей и мышей с карциномой легких Льюис. Показано, что у здоровых животных значения максимальной концентрации вещества в органах выше, чем у опухоленосителей, что может быть обусловлено различием в процессах его абсорбции, распределения и выведения. Полученные результаты подчеркивают необходимость дальнейших исследований для более глубокого понимания механизмов изменения фармакокинетики соединения OL9-116 в условиях протекания опухолевого процесса.

### Основные положения, выносимые на защиту.

- 1. Разработанные методики на основе ВЭЖХ-МС/МС позволяют проводить количественный анализ камфецина в плазме крови, а также агентов KS-389 и OL9-116 в цельной крови и органах для определения параметров фармакокинетики и изучения распределения веществ.
- 2. Распределение камфецина между форменными элементами и плазмой крови является обратимым процессом и практически не зависит от концентрации вещества, температуры и гематокрита.
- 3. Применение методики количественного определения агента KS-389 в цельной крови позволило установить его фармакокинетические параметры при однократном внутрибрюшинном ведении, а использование методик для анализа тканей позволило подтвердить его способность преодолевать гематоэнцефалический барьер.
- 4. Фармакокинетика соединения OL9-116 при внутрибрющинном введении в дозе 5 мг/кг сопоставима с его фармакокинетикой при внутрижелудочном введении в дозе 150 мг/кг по значениям параметров  $C_{max}$  и AUC, что позволило скорректировать схему его введения с топотеканом.
- 5. Распределение агента OL9-116 в легких, печени, почках и первичных опухолевых узлах для мышей с перевитой карциномой легких Льюис характеризуется постоянным уровнем концентрации вещества без выраженного пика и фазы выведения агента, в отличие от группы здоровых животных, у которых в тех же тканях наблюдаются локальные максимумы.

Методология и методы исследования. Теоретической и методологической основой представленного исследования послужили фундаментальные и прикладные исследования отечественных и зарубежных ученых по данной тематике, публикации в периодических изданиях, методические рекомендации. Определение концентрации исследуемых агентов проводилось методом высокоэффективной жидкостной хроматографии в сочетании с тандемным массспектрометрическим детектированием в режиме мониторинга множественных реакций (МRM). Основными нормативными документами, регламентирующими процесс разработки и валидации биоаналитических методик, выступали регуляторные документы FDA, EMA. Все эксперименты с использованием животных проводились в соответствии с Директивой Европейского Сообщества

(2010/63/EU). Обработка полученных результатов проводилась с использованием метода наименьших квадратов, расчетов относительного стандартного отклонения и относительной погрешности.

Степень достоверности. Достоверность представленных в работе результатов обусловлена однородностью выборки объектов исследования, весомым количеством повторных измерений для одного объекта исследования, использования валидированных методик для количественного определения агентов, согласованностью с ранее опубликованными результатами, а также теоретическим обоснованием полученных экспериментальных данных.

**Личный вклад автора.** Автором лично выполнен поиск и анализ научной литературы по теме исследования, проведена разработка и валидация методик, анализ биологических образцов методом ВЭЖХ-МС/МС, статистическая обработка полученных данных и интерпретация результатов. Эксперименты на животных были проведены при непосредственном участии автора. Вклад автора является определяющим и заключается в непосредственном участии на всех этапах исследования, включая постановку задач, их экспериментальную реализацию, подготовку и представление результатов на научных конференциях. Соискателем внесен существенный вклад в подготовку научных публикаций по теме исследования.

Связь диссертации с основными научными темами, внедрение результатов. Полученные результаты вошли в цикл доклинических исследований камфецина, по результатам которых получено разрешение Министерства Здравоохранения РФ №160 от 17.04.2020 на проведение клинических испытаний вещества. В диссертацию включены результаты, полученные соискателем при выполнении исследований по гранту РНФ 19-73-00051 «Дизайн новых адамантансодержащих ингибиторов ферментов репарации ДНК, способных повышать эффективность химиотерапевтических агентов в отношении мультиформной глиобластомы» (руководитель к.х.н. Пономарев К.Ю.), гранту РНФ 21-14-00105 «Ингибиторы тирозил-ДНК-фосфодиэстеразы 1 для сенсибилизации опухолевых клеток к химиопрепара-там, используемым в клинике» (руководитель к.х.н. Захаренко А.Л.).

**Публикации и апробация результатов исследования.** По материалам диссертации опубликованы тезисы 15 докладов, 5 статей в рецензируемых научных журналах, индексируемых в базах Web of Science и Scopus. Результаты исследования докладывались на конференциях в виде 8 устных докладов.

Результаты диссертационной работы были представлены на следующих конференциях: 57-я Международная научная студенческая конференция (Новосибирск, 2019); XXVI Международная научная конференция студентов, аспирантов и молодых ученых «Ломоносов» (Москва, 2019); Междисциплинарная конференция «Молекулярные и Биологические аспекты Химии, Фармацевтики и Фармакологии» (Крым, 2019); The 6th International Electronic Conference on Medicinal Chemistry (онлайн-конференция, 2020); XXVIII Международная научная конференция студентов, аспирантов и молодых ученых «Ломоносов» (Москва, 2021); Первая Всероссийская школа для молодых ученых по медицинской химии MedChemSchool2021 (Новосибирск, 2021); The 9th International

Еlectronic Conference on Medicinal Chemistry (онлайн-конференция, 2023); XXIV Международная научно-практическая конференция студентов и молодых ученых «Химия и химическая технология в XXI веке» (Томск, 2023); Всероссийская конференция с международным участием «Идеи и наследие А.Е. Фаворского в органической химии» (Санкт-Петербург, 2023); VI Съезд фармакологов России (Москва, 2023); 6-я Российская конференция по медицинской химии (Нижний Новгород, 2024).

### Объем и структура диссертации

Работа изложена на 157 страницах машинописного текста, содержит 63 рисунка, 25 таблиц. Диссертационная работа состоит из введения, литературного обзора, обсуждения результатов, экспериментальной части, заключения, выводов, списка цитируемой литературы и приложения. Библиографический список состоит из 174 литературных источников.

## СОДЕРЖАНИЕ РАБОТЫ

### 1. Исследование противовирусного агента камфецина

## 1.1. Оптимизация методики пробоподготовки сухих пятен крови

В литературе описана методика количественного определения камфецина в цельной крови крыс с применением ВЭЖХ-МС/МС и метода сухого пятна крови в диапазоне 50-2500 нг/мл [Rogachev A. D. et. al. 2016]. В данной методике сухие пятна крови экстрагировали ацетонитрилом с добавлением гидрохлорида 2-адамантиламина (2-Ad, рис. 2) в качестве внутреннего стандарта, а степень извлечения камфецина составляла менее 2%.



2-Ad

(внутренний стандарт)

**Рис.2.** Структурная формула гидрохлорида 2-адамантилами-на (2-Ad, внутренний стандарт).

Для анализа экстракт разбавляли водой в соотношении 1:9, поскольку при анализе образца, растворенного в чистом ацетонитриле, аналит и внутренний стандарт частично элюируются в области мертвого объема хроматографической колонки с обращенно-фазовым сорбентом, что требовало дополнительного разбавления образца водой перед проведением анализа.

В настоящей работе было обнаружено, что при приготовлении раствора камфецина и 2-Ad в метаноле и при использовании этого растворителя в качестве элюента Б подвижной фазы оба вещества удерживаются на обращенно-фазовом сорбенте хроматографической колонки. На основании этого была проведена оптимизация методики пробоподготовки биологических образцов как сухих пятен, так и плазмы крови, содержащих камфецин, а в качестве экстрагента был использован метанол. Для проверки применимости модифицированного метода были приготовлены и проанализированы образцы сухих пятен крови, а также построена градуировочная зависимость в диапазоне 2-2000 нг/мл.

Таким образом, изменение экстрагента позволило исключить этап разбавления образца водой, что ускорило процесс пробоподготовки. Кроме того,

было обнаружено, что применение 0,1% раствора муравьиной кислоты в метаноле увеличивает степень извлечения камфецина до 10%, что в пять раз превышает значение степени извлечения ранее разработанной и опубликованной методики, а также позволило снизить нижний предел количественного определения вещества в крови с 50 нг/мл до 2 нг/мл. Построенная градуировочная зависимость позволила подтвердить применимость методики для дальнейшего анализа камфецина в сухих пятнах крови в широком диапазоне концентраций.

### 1.2. Исследование стабильности камфецина в сухих пятнах крови

Оптимизированная методика была применена для исследования стабильности образцов сухих пятен. Образцы хранили в течение 28 дней при комнатной температуре (+24 °C), в бытовом холодильнике (+4 °C), морозильной камере (-12 °C) и низкотемпературной морозильной камере (-70 °C). При хранении образцов при комнатной температуре наблюдается быстрое снижение содержания камфецина во всем диапазоне концентраций (**puc. 3A**), что свидетельствует о том, что образцы необходимо анализировать в достаточно

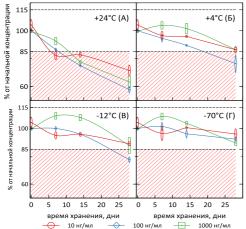



Рис. 3. Процент от начальной концентрации камфецина в сухих пятнах крови (n=4), хранившихся в течение 28 дней при комнатной температуре ( $\pm 24^{\circ}$ C, A), в холодильнике ( $\pm 4^{\circ}$ C, B), в морозильной камере бытового холодильника ( $\pm 12^{\circ}$ C, B), при  $\pm 70^{\circ}$ C ( $\pm 10^{\circ}$ C) ( $\pm$ 

короткие сроки (до 4-5 дней) при хранении или транспортировке без охлаждения. Снижение концентрации камфецина в образцах может быть обусловлено десорбцией вещества из-за его достаточно высокой летучести, так как одним из свойств камфецина является его способность к сублимации. Также нельзя исключать возможность окисления вещества с образованием соответствующих продуктов.

При хранении образцов в бытовом холодильнике (+4°C) наблюдается снижение скорости их деградации по сравнению с хранением при комнатной температуре: потеря 15% от пер-

воначального количества наблюдается через 2 недели (рис. 3Б). При хранении образцов в течение 14 дней при температуре -12 °C практически не наблюдалось потери вещества (рис. 3В). Глубокая заморозка сухих пятен крови, содержащих камфецин, при температуре -70 °C позволяет хранить образцы в течение 4 недель и корректно определять аналит во всем диапазоне концентраций. Анализ образцов показал, что в течение этого срока хранения снижение содержания камфецина в образцах не превышало 10% во всем диапазоне концентраций (рис.  $3\Gamma$ ). На основании полученных данных можно сделать вывод о том, что для получения корректных данных образцы камфецина в сухих пятнах крови лучше всего анализировать сразу после приготовления. В случае, когда невозможно

провести анализ в течение 3-5 дней или требуется длительная транспортировка образцов, их следует хранить в условиях глубокой заморозки при температуре –70 °C не более 1 месяпа.

## 1.3. Разработка и валидация методики анализа камфецина в плазме крови

В биоанализе плазма и сыворотка крови наряду с цельной кровью являются основными матрицами для количественного определения ксенобиотиков, что связано с относительной простотой их получения и возможностью хранения. Разработка методик анализа для данных матриц необходима не только для проведения фармакокинетических исследований, но и для изучения распределения вещества между компонентами крови (форменными элементами и плазмой), что являлось одной из задач данного исследования.

На первом этапе были оценены 4 способа пробоподготовки образцов плазмы крови: осаждение белков органическим растворителем, метод сухого пятна, твердофазная экстракция оксидом алюминия, твердофазная экстракции на целлюлозном носителе (FPSE). Анализ ВЭЖХ-МС/МС показал, что все методы обработки матрицы дают относительно одинаковые результаты по извлечению вещества из плазмы крови. Исходя из этого, был выбран метод осаждения белков плазмы 9-кратным объемом метанола как наиболее простой и быстрый способ обработки матрицы. В качестве внутреннего стандарта был выбран гидрохлорид 2-адамантиламина с концентрацией 10 мкг/мл.

Разработанная методика была валидирована согласно требованиям регуляторных документов FDA и EMA. Селективность методики была продемонстрирована на холостом образце плазмы и образце плазмы, содержащим камфецин в концентрации 500 нг/мл. Градуировочная зависимость была построена в диапазоне 10-5000 нг/мл, нижний предел количественного определения составил 10 нг/мл, а отклонение от номинального значения составило 2,7%. Значения относительной погрешности для образцов контроля качества при проверке точности и прецизионности не превышают допустимую погрешность рассчитанной концентрации. Значения степеней извлечения аналита составили 103% и 99,2%. Было показано, что методика исключает перенос вещества при анализе большой серии образцов, а также что образцы стабильны в автосамплере в течение 24 часов. Проведение валидации методики позволило доказать, что методика может быть применима для дальнейшего анализа образцов.

# 1.4. Исследование распределения камфецина между компонентами крови

Попадая в кровь, вещество может либо оставаться в свободном виде, либо связываться с форменными элементами крови и/или белками плазмы. В случае химической реакции или электростатического взаимодействия функциональных групп вещество может связываться с белками необратимо или разрушаться. Для оценки степени связывания вещества с компонентами крови используется понятие коэффициента распределения  $f_p$  [Uchimura T. et. al. 2010], который определяется как отношение массы вещества, связанного с формен-

ными элементами крови, к массе вещества, оставшегося в плазме. Путем проведения математических преобразований можно связать коэффициент распределения с концентрацией вещества в цельной крови, плазме и значением гематокрита и рассчитать количество вещества, связанного с форменными элементами крови. В ряде исследований было показано, что распределение многих соединений между форменными элементами и плазмой может существенно меняться в зависимости от температуры, что потенциально приводит к искажению результатов количественного анализа [Fisar Z. et. al. 2006; Xu Y. et. al. 2015]. В связи с этим, в данной работе распределение исследуемых соединений между компонентами крови было изучено с учетом влияния температурного фактора.

Для изучения распределения камфецина между форменными элементами крови и плазмой были приготовлены образцы крови, содержащие вещество в концентрации 50, 250, 1000 и 2500 нг/мл. Распределение камфецина было изучено при температурах +4 °C, +25 °C и +38 °C для нормальной крови крысы (H = 40%, **puc. 4**) и при разных значениях гематокрита (24%, 40%, 65%) для комнатной температуры (+25 °C, **puc. 5**). Также исследована обратимость процесса адсорбции вещества на форменных элементах (**puc. 6**).

Полученные значения коэффициента  $f_p$  для образцов, исследованных при разных температурах и значениях гематокрита, свидетельствуют о равномерности распределения камфецина между форменными элементами и плазмой крови. Температура не оказывает существенного влияния на коэффициент распределения, что может позволить проводить количественный анализ камфецина в образцах цельной крови, хранившихся при разных температурах. С увеличением значения гематокрита происходит увеличение коэффициента распределения, то есть доли камфецина, адсорбированного на форменных элементах крови, особенно для низких концентраций вещества. Это связано с увеличением количества вещества, связанного с форменными элементами, и одновременным уменьшением объема плазмы. В то же время, для образцов с высоким содержанием камфецина значения коэффициентов распределения вещества практически не зависят от гематокрита (рис. 5).

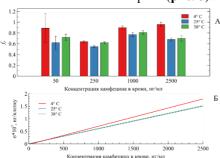
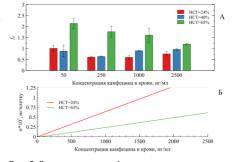
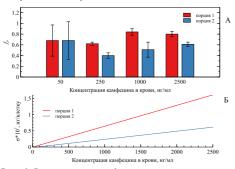





Рис. 4. Распределение камфецина между компонентами крови в зависимости от концентрации при разных температурах: A — диаграмма значений коэффициентов распределения  $f_p$ , E — график зависимости концентрации камфецина в форменном элементе  $\sigma$  от концентрации камфецина в крови.



**Рис. 5.** Распределение камфецина между компонентами крови при разном значении гематокрита: A диаграмма значений коэффициентов распределения  $f_p$ , B – график зависимости концентрации камфецина в форменном элементе  $\sigma$  от концентрации камфецина в крови.

Для подтверждения гипотезы о том, что камфецин действительно адсорбируется на форменных элементах крови, а не подвергается биотрансформации с участием ферментов, присутствующих в крови, была изучена обратимость процесса адсорбции вещества на форменных элементах. В эксперименте был приготовлен образец крови, содержащей камфецин, после чего центрифугированием было отделена плазма, а к оставшейся эритроцитарной массе был добавлен аналогичной объем чистой плазмы крови. После аккуратного перемешивания эритроцитов и повторного отделения плазмы в ней была определена концентрация камфецина.



**Рис. 6.** Распределение камфецина между компонентами крови при повторной экстракции вещества в чистую плазму: А – диаграмма значений коэффициентов распределения  $f_p$ , Б – график зависимости концентрации камфецина в форменном элементе  $\sigma$  от концентрации камфецина в крови.

Мы предполагаем, что обратимая адсорбция камфецина на форменных элементах крови не лимитирует его распределение, а напротив, приводит к созданию депо, обеспечивающего циркуляцию соединения по организму и поддержание его концентрации в плазме и органах, что в конечном итоге обусловливает проявление противовирусной активности и защиту от патогенного воздействия вируса гриппа. Выявленная линейная зависимость концентрацией камфецина цельной крови и

его количеством, связанным с форменными элементами, свидетельствует о возможности регулирования его концентрации в органах при соответствующей дозировке и режиме введения лекарственного препарата.

# 2. Исследование фармакокинетики и распределения ингибитора TDP1 на основе дегидроабиетиновой кислоты (KS-389)

2.1. Подбор условий анализа и разработка протокола пробоподготовки образиов цельной крови и тканей

На первом этапе были разработаны условия хроматографического разделения и масс-спектрометрической детекции для агента KS-389 с использованием градиентного режима элюирования. В качестве внутреннего стандарта был выбран 2,5-бис(4-диэтиламинофенил)-1,3,4-оксадиазол (2,5-ВDРО, рис. 7), для которого были подобраны условия масс-спектрометрической детекции. Вешество может быть использовано в качестве

#### 2.5-BDPO

**Рис. 7.** Структурная формула 2,5-бис(4-диэтиламинофенил)-1,3,4-оксадиазола (2,5-BDPO).

внутреннего стандарта, поскольку имеет стабильный аналитический сигнал в разработанных хроматографических условиях и не взаимодействует с аналитом. Для поиска оптимального метода пробоподготовки образцов цельной крови мыши для количественного определения KS-389 были выбраны четыре способа, которые лучше всего подходили для извлечения вещества

данной природы (рис. 8). Сравнение методов пробоподготовки проводили на образцах крови с одинаковой концентрацией вещества. Несмотря на то, что жидко-жидкостная экстракция обеспечивала высокую степень извлечения

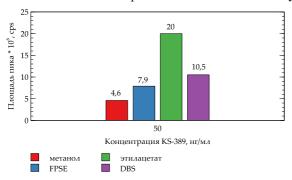



Рис. 8. Диаграмма значений площади пика, полученных при анализе образцов цельной крови, содержащих агент KS-389 в концентрации 50 нг/мл, при обработке различными методами

вещества, данный пробоподготовки является трудоемким при обработке большой серии образцов. Поэтому в качестве метода пробоподготовки образцов цельной крови был выбран метод сухого пятна, который в том числе удобен для отбора, хранения и транспортировки образцов при дальнейшем исследовафармакокинетики нии агента.

Количественное определение биологически активных веществ в тканях животных осложняется необходимостью в гомогенизации образца и в подборе системы, позволяющей наиболее полно извлечь анализируемый компонент. При разработке методик анализа KS-389 в тканях мозга, печени и почек была проведена гомогенизация образца в воде с последующим добавлением метанола, а также гомогенизация образца в 80% водном метаноле. Было обнаружено, что во втором случае происходит существенно более эффективное извлечение вещества из биологической матрицы в сравнении с последовательным добавлением растворителей.

Таким образом, в работе была показана эффективность описанной в литературе методики пробоподготовки биологических тканей [161] для извлечения агента KS-389 из тканей мозга мыши. Данный подход к гомогенизации органов был применен для мозга, печени и почек.

Разработанные методики количественного определения агента KS-389 в цельной крови, мозге, печени и почках были валидированы по таким параметрам как селективность, градуировочная зависимость, нижний предел количественного определения, точность и прецизионность, степень извлечения, матричный эффект, стабильность, перенос. В результате проведения валидации

было показано, что разработанные методики соответствуют требованиям регуляторных документов FDA и EMA и могут быть применимы для анализа KS-389 в указанных биологических матрицах.

## 2.2. Исследование фармакокинетики KS-389 и его распределения по органам

Полное исследование фармакокинетики соединения KS-389 было проведено на шести животных после проведения предварительного эксперимента, в котором была выбрана лекарственная форма и способ ее введения.

Свежеприготовленную лекарственную форму вводили внутрибрюшинно группе мышей (n = 6 при исследовании фармакокинетики, n = 14 при исследовании распределения) в дозе 5 мг/кг. Образцы крови отбирали из хвостовой вены. Аликвоту образца цельной крови объемом 10 мкл наносили на бумагу Whatman Protein Saver Card 903. Образцы сухих пятен крови высушивали на воздухе в течение 3 часов и обрабатывали в соответствии с разработанной и валидированной методикой анализа.

Анализ показал, что максимальная концентрация вещества как в крови, так и в органах экспериментальных животных достигается через 1 ч после введения и составляет в среднем 52 нг/мл в крови, около 27 нг/г в мозге и более 1000 нг/г в печени и почках (рис. 9). После достижения максимума содержание вещества постепенно снижается, а практически полное выведение его из организма происходит через 6 часов.

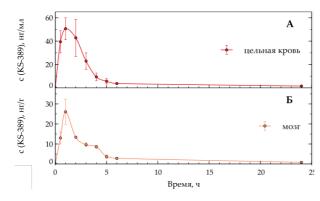
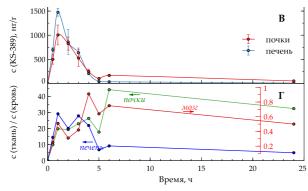




Рис. 9. Зависимости концентрации КS-389 от времени после внутрибрюшинного введения мышам в дозе 5 мг/кг в цельной крови (А), в мозге (Б), в печени и почках (В), а также графики соотношения концентраций в тканях к цельной крови (Г). Стрелками на рис. (Г) обозначено расположение осей ординат, к которым относятся соответствующие графики



Согласно рассчитанным фармакокинетическим параметрам (табл. 1), агент КS-389 достаточно быстро всасывается в кровоток и, как следствие, быстро элиминируется. Несмотря на быструю скорость выведения, препарат циркулирует в организме по меньшей мере в течение

10,5 ч, а рассчитанный период полувыведения составляет в среднем 13,3 ч, что может быть достаточно в качестве вспомогательной противоопухолевой терапии.

**Таблица 1.** Фармакокинетические параметры (среднее значение ± стандартное отклонение) KS-389 после внутрибрюшинного введения мышам (5 мг/кг).

| Параметр                                                                             | Значение для крови          |
|--------------------------------------------------------------------------------------|-----------------------------|
| Т1/2, Ч                                                                              | 13,3±6,1                    |
| Ттах, ч                                                                              | 1,25±0,61                   |
| Стах, нг/мл                                                                          | 52±11                       |
| $\mathrm{AUC}_{0\infty}$ , $\mathrm{H}\Gamma/\mathrm{M}\mathrm{J}\cdot\mathrm{\Psi}$ | 230±43                      |
| МRТ₀-∞, ч                                                                            | $10,5\pm6,1$                |
| CL, (мг/кг)/(нг/мл)/ч                                                                | $(22,4\pm4,4)\times10^{-3}$ |

 $T_{1/2}$  — период полувыведения,  $T_{max}$  — время достижения максимальной концентрации,  $C_{max}$  — максимальная концентрация,  $AUC_{0-\infty}$  — площадь под кривой зависимости концентрации вещества в крови от времени от нуля до бесконечности,  $MRT_{0-\infty}$  — среднее время нахождения вещества в организме, CL — общий клиренс.

Рассчитанные значения отношений концентрации KS-389 в ткани к концентрации в цельной крови выявили, что для агента характерно распределение с преимущественным накоплением в печени и почках (**рис. 9Г**). Отношение концентрации «печень/кровь» достигало максимума ( $\sim$ 20) через 1 час после введения, что свидетельствует о быстром захвате вещества гепатоцитами. Высокий коэффициент распределения «почки/кровь» (до 45 через 6 часов) указывает на активную экскрецию KS-389 через мочевыделительную систему.

Ключевым результатом является доказательство способности KS-389 преодолевать гематоэнцефалический барьер: отношение «мозг/кровь» достигало значения 0,9 через 3—4 часа после введения вещества животным. Несмотря на меньшую концентрацию в мозге по сравнению с периферическими органами, сам факт проникновения подтверждает перспективность применения KS-389 в качестве агента для вспомогательной терапии опухолей головного мозга, в частности, в комбинации с темозоломидом.

## 3. Исследование фармакокинетики агента OL9-116, ингибитора на основе усниновой кислоты

3.1. Подбор условий анализа и разработка протокола пробоподготовки образцов цельной крови

Разработка и оптимизация условий анализа соединения OL9-116 заключалась в подборе параметров масс-спектрометра для его детекции в режиме MRM. Для этого был зарегистрирован масс-спектр фрагментации вещества и были отобраны наиболее интенсивные осколочные ионы, для которых в автоматическом режиме были оптимизированы параметры сканирования. Параметры сканирования для внутреннего стандарта (2,5-BDPO), были оптимизированы ранее, что позволило использовать их при разработке метода для агента OL9-116. Условия хроматографического разделения были подобраны в градиентном режиме элюирования.

В ходе работы были проверены 4 способа пробоподготовки образцов цельной крови мыши для количественного определения OL9-116. Сравнительный анализ методов, включая осаждение белков смесью органического растворителя с сульфатом цинка, а также использование метода

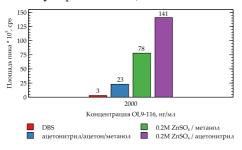



Рис. 10. Диаграмма значений площади пика, полученных при анализе образцов цельной крови, содержащих агент OL9-116 в концентрации 2000 нг/мл, при обработке различными методами

сухого пятна крови, показал, что наиболее эффективным является двухэтапный метод: осаждение водным раствором сульфата цинка (0,2 M) с последующей экстракцией ацетонитрилом (рис. 10). Данный подход обеспечил максимальную степень извлечения аналитов и был выбран в качестве оптимального для дальнейших исследований.

Разработанная методика была валидирована согласно требованиям регуляторных документов FDA и EMA. Селективность методики была продемонстрирована на холостом образце цельной крови и образце крови, содержащим OL9-116 в концентрации 1000 нг/мл. Градуировочная зависимость была построена в диапазоне 15-5000 нг/мл, а отклонение от теоретического значения нижнего предела количественного определения составило 8,6%. Значения относительной погрешности для образцов контроля качества при проверке точности и прецизионности внутри и между аналитическими циклами не превышали 8,2 и 7,7% соответственно. Значения степеней извлечения аналита составили 61% и 69%. Матричный фактор, оцененный для тех же образцов, составил 82% и 90%, соответственно. Было показано, что методика исключает перенос вещества при анализе большой серии образцов, а также что образцы стабильны в автосамплере в течение 24 часов. Таким образом, было доказано, что методика может быть применима для дальнейшего анализа.

### 3.2. Исследование фармакокинетики агента OL9-116

В ходе исследования проведено сравнительное изучение фармакокинетики производного усниновой кислоты OL9-116 при различных способах введения: группам мышей лекарственную форму вводили внутрижелудочно в дозе  $150~{\rm Mr/kr}~(n=6)$  и внутрибрюшинно в дозе  $5~{\rm Mr/kr}~(n=8)$ . Образцы цельной крови объемом  $10~{\rm Mkn}$  отбирали из хвостовой вены и обрабатывали в соответствии с разработанной методикой.

Проведенное исследование выявило характерные особенности фармакокинетики соединения OL9-116: при внутрижелудочном введении (**рис. 11**) вещество демонстрирует пролонгированный эффект с периодом полувыведения 10,4 часа (**табл. 2**) и сохраняет концентрацию в крови на уровне 500 нг/мл. При этом его биодоступность, по предварительной оценке, ниже по сравнению с усниновой кислотой [*Wang H. et. al. 2018*].

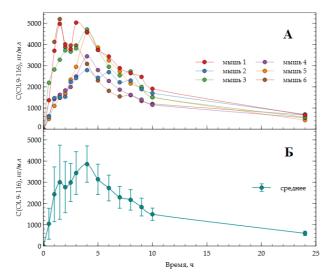



Рис. 11. Зависимость концентрации OL9-116 в цельной крови от времени после внутрижелудочного введения в дозе 150 мг/кг: А) индивидуальные графики для каждого животного; Б) усредненные значения (представлен в виде средних значений ± стандартное отклонение).

При внутрибрюшинном введении агента в дозе было установлено, что способ обеспечивает значительно более высокую биодоступность OL9-116, что позволяет снизить дозу агента в 30 раз для достижения сопоставимых максимальных концентраций в крови. Фармакокинетический профиль характеризуется достижением максимального значения концентрации в течение 2,5 часов и сохранением высоких значений в течение 10 часов (рис. 12).

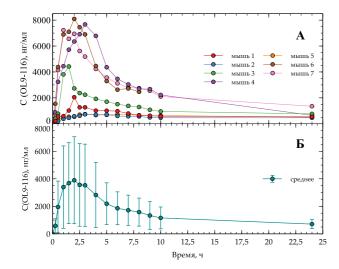



Рис. 12. Графики зависимости концентрации О19116 в цельной крови от времени после внутрибрюшинного введения в дозе 5
мг/кг: А) индивидуальные
графики для каждого животного; Б) усредненные
значения (представлен в
виде средних значений ±
стандартное отклонение
SD).

**Таблица 2.** Фармакокинетические параметры (среднее значение ± стандартное отклонение) для OL9-116 после внутрижелудочного (150 мг/кг) и внутрибрющинного (5 мг/кг) введения мышам.

| Параметр                                       | в/ж (150 мг/кг)                  | в/б (5 мг/кг)                |
|------------------------------------------------|----------------------------------|------------------------------|
| Т <sub>1/2</sub> , ч                           | $10,4 \pm 3,2$                   | 8,55±4,83                    |
| T <sub>max</sub> , ч                           | $3,4 \pm 1,0$                    | $2,21\pm0,75$                |
| Стах, нг/мл                                    | $4284 \pm 958$                   | 4418±3039                    |
| AUC₀ -∞, нг/мл·ч                               | $(4,94 \pm 0,69) \times 10^4$    | $(3,47\pm1,78)\times10^4$    |
| МRТ₀- ∞, ч                                     | $14,2 \pm 3,4$                   | 12±7                         |
| $CL$ , $(M\Gamma/K\Gamma)/(H\Gamma/M\Pi)/\Psi$ | $(3,09 \pm 0,43) \times 10^{-3}$ | $(1,95\pm1,09)\times10^{-4}$ |

 $T_{1/2}$  — период полувыведения,  $T_{max}$ — время достижения максимальной концентрации,  $C_{max}$  — максимальная концентрация,  $AUC_{0-\infty}$  — площадь под кривой зависимости концентрации вещества в крови от времени от нуля до бесконечности,  $MRT_{0-\infty}$  — среднее время нахождения вещества в организме, CL — общий клиренс.

Дополнительным подтверждением служит увеличение площади под фармакокинетической кривой (AUC) при внутрибрюшинном введении OL9-116. Полученные результаты демонстрируют, что изменение пути введения позволяет существенно оптимизировать дозировку OL9-116 при сохранении соответствующих значений концентрации в системном кровотоке.

На основе полученных данных была оптимизирована схема комбинированной терапии с топотеканом на модели карциномы легких Льюис. Установлено, что введение топотекана в момент достижения максимальной концентрации OL9-116 в крови обеспечивает значительно более выраженный противоопухолевый эффект по сравнению с монотерапией или одновременным применением веществ. Данный режим введения, основанный на фармакокинетическом профиле, позволил добиться существенного подавления роста опухоли и метастазирования, что подтверждает ключевую роль фармакокинетических исследований в разработке эффективных режимов терапии.

### 4. Исследование распределения агента ОL9-116 в органах

4.1. Оптимизация условий хроматографического разделения и разработка протокола пробоподготовки тканей

Для количественного определения OL9-116 в гомогенатах тканей была оптимизирована методика ВЭЖХ-МС/МС, поскольку в ходе предварительных экспериментов было установлено, что использование 2,5-вDРО в качестве внутреннего стандарта дает нестабильный аналитический сигнал в тканевых матрицах. В связи с этим в качестве внутреннего стандарта был использован гидрохлорид 2-адамантиламина (2-Ad). Данная замена, в свою очередь, обусловила необходимость комплексной модификации хроматографических условий. Оптимизация хроматографических условий включала замену органического компонента подвижной фазы на метанол с добавлением муравьиной кислоты вместо ацетонитрила, а также увеличение скорости элюирования с 250 до 300 мкл/мин, что сократило время анализа до 8,5 минут. Для устранения эффекта переноса аналита было обнаружено, что в качестве промывочного раствора автосамплера необходимо использовать ацетонитрил, а не метанол.

Для пробоподготовки тканей была выбрана ультразвуковая гомогенизация в физиологическом растворе, которая обеспечивала наилучшую однородность гомогената в сравнении с механической гомогенизацией. В качестве метода обработки гомогенатов тканей был выбран метод QuEChERS [Boggs A.S.P. et. al. 2017; Zhang X. et. al. 2024], который заключается в обработке образца смесью солей в присутствии растворителя и последующей твердофазной очисткой образца обращенно-фазным сорбентом.

Ключевой проблемой стала несовместимость выбранного внутреннего стандарта (2-Ad) со стандартным протоколом QuEChERS, поскольку в качестве экстрагента должен быть использован ацетонитрил. Это потребовало поиска компромисса между эффективностью экстракции и хроматографическим поведением внутреннего стандарта. Для предотвращения элюирования 2-Ad в области мертвого объема дополнительно была введена стадия разбавления экстракта метанолом перед проведением анализа. Дополнительной задачей стала оптимизация состава экстрагента. Было показано, что добавление раствора муравьиной кислоты позволило увеличить эффективность извлечения OL9-116 в рамках метода QuEChERS. В результате комплексной оптимизации были разработаны методики для быстрого и надежного определения OL9-116 в гомогенатах легких, печени, почек и первичных опухолевых узлов.

Разработанные методики для количественного анализа OL9-116 в гомогенатах легких, печени и почках были валидированы по таким параметрам как селективность, градуировочная зависимость, нижний предел количественного определения, точность и прецизионность, степень извлечения, матричный эффект, стабильность, перенос. Для анализа OL9-116 в первичных опухолевых узлах была показана селективность методики, построена градуировочная зависимость и определен нижний предел количественного определения. В результате проведения валидации было показано, что разработанные методики соответствуют требованиям регуляторных документов FDA и EMA и могут быть применимы для анализа OL9-116 в указанных биологических матрицах.

# 4.2. Исследование распределения OL9-116 в легких, печени, почках здоровых животных и опухоленосителей

Разработанные методики были использованы для количественного определения вещества в органах здоровых и опухолевых мышей после однократного введения вещества. в дозе 150 мг/кг. Животные были разделены на две группы: здоровые мыши и мыши с карциномой легких Льюис на 17-й день после трансплантации опухолевых клеток.

Исследование распределения OL9-116 в органах выявило существенные различия в фармакокинетике соединения у здоровых животных и опухоленосителей. У здоровых мышей максимальная концентрация в легких достигала 140 мкг/г через 1 час после введения, тогда как у опухоленосителей этот показатель был в 3 раза ниже при более раннем достижении максимального значения концентрации (рис. 13A). В печени здоровых животных наблюдалась кинетика с двумя максимумами концентрации (в 7 и 13 часов, рис. 13Б), что может свидетельствовать о процессе кишечно-печеночной рециркуляции [Godfrey K.R. et. al. 2016]. В почках также выявлены множественные пики концентрации (рис. 13B), синхронные с печеночным профилем, и высокие значения максимальной концентрации OL9-116, что может свидетельствовать о преодолении агентом почечного барьера [Люльман X. и др. 2008].

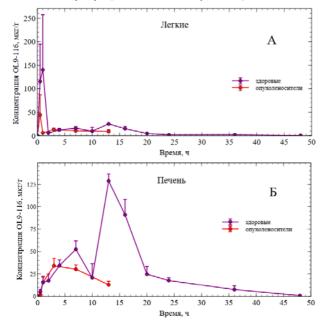
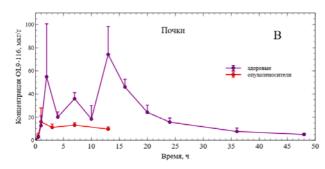




Рис. 13. График зависимости концентрации соединения ОL9-116 от времени у здоровых животных (фиолетовая линия) и мышей с перевитой карциномой легких Льюис (красная линия) в тканях легких (А), печени (Б), почек (В). Представлен в виде средних значений ± стандартная ощибка среднего (SEM).

Особый интерес представляет изменение фармакокинетического профиля у животных с опухолью: в печени и почках опухоленосителей отсутствуют характерные для здоровых животных вторичные пики концентрации, характерные для здоровых



животных вторичные пики концентрации, а кинетические кривые приобретают платообразный характер.

У мышей с карциномой легких Льюис установлено стабильное поддержание концентрации соединения в тканях

на уровне 5-30 мкг/г в течение 12 часов после введения, тогда как у здоровых животных наблюдались выраженные флуктуации с несколькими максимумами. В опухолевой ткани подтверждено присутствие OL9-116 на уровне нескольких мкг/г в течение по крайней мере 13 часов (**puc. 16**).

Полученные данные свидетельствуют о значительном влиянии опухолевого процесса на распределение OL9-116 в организме, что требует дополнительного изучения механизмов измененной фармакокинетики соединения при патологических состояниях.

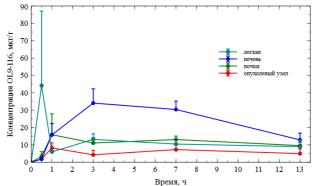



Рис. 14. Зависимость концентрации вещества от времени в гомогенатах легких, печени, почек и первичных опухолевых узлах у мышей с перевитой карциномой легких Льюис. Представлен в виде средних значений ± стандартная ошибка среднего (SEM).

Выявленные особенности могут быть связаны с изменением метаболизма при опухолевом процессе, в частности, с повышенной экспрессией Р-гликопротеинов, способствующих снижению биодоступности и изменению распределения ксенобиотиков [Kim M.S. et. al. 2016]. Полученные данные свидетельствуют о значительном влиянии опухолевого процесса на распределение OL9-116 в организме, что требует дополнительного изучения механизмов измененной фармакокинетики соединения при патологических состояниях. Кроме того, полученные данные подчеркивают важность исследования фармакокинетики противоопухолевых агентов в условиях протекания онкологического заболевания при разработке режима моно- или комбинированной терапии с другими препаратами.

### Заключение

Масс-спектрометрия в сочетании с жидкостной хроматографией является практически универсальным методом для анализа ксенобиотиков в биологических матрицах. Развитие методов пробоподготовки не только биологических жидкостей, но и тканей позволяют наиболее полно извлекать аналит и устранять мешающее влияние компонентов биологической матрицы.

В работе было продемонстрировано применение различных методов пробоподготовки, описанных в литературном обзоре, таких как осаждение белков, экстракция сухого пятна крови, а также механическая гомогенизация тканей. Кроме того, в ходе работы были использованы методы твердофазной и жидко-жидкостной экстракции в рамках поиска наиболее оптимального способа пробоподготовки цельной крови. Разработанные методики количественного определения камфецина и агентов KS-389 и OL9-116 могут быть адаптированы для аналогичных исследований при проведении клинических исследований. Применимость разработанных методик была продемонстрирована в рамках проведения доклинических исследований веществ: изучения фармакокинетики, распределения и стабильности агентов *in vitro*.

Исследование стабильности камфецина в сухих пятнах крови позволяет установить срок хранения и транспортировки образцов до 5 дней при охлаждении и не более 1 месяца в условиях глубокой заморозки. В рамках проведенного исследования было показано, что камфецин обратимо сорбируется на форменных элементах крови, а его распределение между компонентами крови позволяет использовать плазму для количественного определения вещества при проведении клинических испытаний.

Исследование фармакокинетики и распределения агента KS-389, ингибитора TDP1 на основе дегидроабиетиновой кислоты, позволило доказать его проникновение через гематоэнцефалический барьер, что является важным при терапии глиомы. Дальнейшие исследования фармакологических эффектов, а также использование модели ксенотрансплантата опухолевых клеток позволят разработать применимость вещества для терапии опухолей и режим дозировки и его введения.

Последовательное исследование фармакокинетики агента OL9-116, ингибитора TDP1 на основе усниновой кислоты, позволило обоснованно снизить его дозу в 30 раз при изменении способа введения мышам. При этом сравнение фармакокинетики OL9-116 и топотекана привело к изменению схемы введения препаратов и усилению противоопухолевого эффекта на модели карциномы легких Льюис. Одним из интересных и перспективных исследований с применением масс-спектрометрических подходов является исследование фармакометаболомики агента, поскольку в настоящее время достаточно мало известно о метаболических изменениях, связанных с противоопухолевым лечением разрабатываемыми или рекомендованными препаратами *in vivo*.

### Выводы

- 1. Разработанные методики количественного определения камфецина в плазме крови крысы, а также производных дегидроабиетиновой (агента KS-389) и усниновой (агента OL9-116) кислот в цельной крови и органах мышей полностью соответствуют критериям валидации и могут быть использованы в доклинических исследованиях.
- 2. Установлено, что длительное хранение образцов сухих пятен крови, содержащих камфецин, возможно только в условиях глубокой заморозки. Обнаружено, что в ходе хранения образцов при -12 °C более 14 дней, а также при комнатной температуре и +4 °C более 5 дней происходит их деградация, что может привести к получению некорректных результатов анализа.
- 3. Показано, что камфецин обратимо сорбируется на форменных элементах крови, а его распределение между компонентами крови практически не зависит от значений концентрации, температуры и гематокрита.
- 4. Установлены фармакокинетические параметры для агента KS-389 при внутрибрющинном введении мышам в дозе 5 мг/кг, в частности, показано, что среднее значение максимальной концентрации вещества в крови  $C_{max}$  составляет  $52\pm11$  нг/мл, а среднее время ее достижения  $T_{max}=75\pm36$  мин. Обнаружено, что агент KS-389 проникает через гематоэнцефалический барьер, накапливается в печени и почках, при этом соотношение концентрации в ткани к концентрации в крови может достигать 40.
- 5. Показано, что внутрибрюшинное введение соединения OL9-116 позволяет снизить дозу в 30 раз для достижения значений  $C_{max}$  и AUC, аналогичных внутрижелудочному введению. На основании полученных фармакокинетических параметров OL9-116 сформулированы рекомендации по введению агента, позволившие усилить противоопухолевый эффект топотекана в отношении карциномы легких Льюис.
- 6. Обнаружено, что распределение соединения OL9-116 в органах мышей с перевитой карциномой легких Льюис существенно отличается от такового у здоровых животных. У опухоленосителей установлено трехкратное снижение с сохранением стабильных уровней значений концентраций для печени, почек и первичного опухолевого узла в течение 12 часов.

## Список публикаций по теме диссертации

- 1. **A.A. Okhina**, A.D. Rogachev, O.I. Yarovaya, M.V. Khvostov, T.G. Tolstikova, A.G. Pokrovsky, V.A. Khazanov, N.F. Salakhutdinov. Development and validation of an LC-MS/MS method for the quantitative analysis of the anti-influenza agent camphecene in rat plasma and its application to study the blood-to-plasma distribution of the agent // J. Pharm. Biomed. Anal., -2020, V. 180, P.113039.
- 2. **A.A. Okhina**, A.D. Rogachev, O.I. Yarovaya, A.G. Pokrovsky, N.F. Salakhutdinov. Stability study of the antiviral agent camphecene in dried blood spots at different temperatures // Drug Test. Anal., 2021, V.13, Is. 10, P. 1797-1802.

- 3. **A.A. Okhina**, A.D. Rogachev, K.S. Kovaleva, O.I. Yarovaya, A.S. Khotskina, E.L. Zavyalov, S.Z. Vatsadze, A.G. Pokrovsky, N.F. Salakhutdinov. Development of an LC-MS/MS-based Method for Quantification and Pharmacokinetics Study on SCID Mice of A Dehydroabietylamine-adamantylamine Conjugate, A Promising Inhibitor of the DNA Repair Enzyme // J. Pharm. Biomed. Anal., 2023, V. 234, P. 115507.
- 4. **A.A. Okhina**, T.E. Kornienko, A.D. Rogachev, O.A. Luzina, N.A. Popova, V.P. Nikolin, A.L. Zakharenko, N.S. Dyrkheeva, A.G. Pokrovsky, N.F. Salakhutdinov, O.I. Lavrik. Pharmacokinetic study of Tdp1 inhibitor resulted in a significant increase in antitumor effect in the treatment of Lewis lung carcinoma in mice by its combination with topotecan // J. Pharm. Biomed. Anal., 2023, V. 236, P. 115731.
- 5. **A.A. Okhina**, T.E. Kornienko, A.D. Rogachev, O.A. Luzina, N.A. Popova, V.P. Nikolin, A.L. Zakharenko, N.S. Dyrkheeva, A.G. Pokrovsky, N.F. Salakhutdinov, O.I. Lavrik. Tissue distribution of OL9-116, a Tdp1 inhibitor based on usnic acid, is significantly altered in Lewis lung carcinoma-bearing mice compared to healthy animals // J. Pharm. Biomed. Anal., 2025, V. 265, P. 117054.