На правах рукописи

Ann

КЛАДОВА ОЛЬГА АЛЕКСЕЕВНА

КОНФОРМАЦИОННАЯ ДИНАМИКА ДНК-ГЛИКОЗИЛАЗ ENDO III И ENDO VIII В ПРОЦЕССЕ ВЗАИМОДЕЙСТВИЯ С ДНК

03.01.04 - биохимия

Автореферат диссертации на соискание учёной степени кандидата химических наук

Новосибирск - 2019

Работа выполнена в Федеральном государственном бюджетном учреждении науки Институт химической биологии и фундаментальной медицины СО РАН

Научный руководитель:

Кузнецов Никита Александрович, д.х.н.

Официальные оппоненты:

Смирнов Иван Витальевич, д.х.н. Федеральное государственное бюджетное учреждение науки Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова РАН, зав. лабораторией

Синицына Ольга Ивановна, к.б.н.,

Федеральный исследовательский центр Институт цитологии и генетики СО РАН, в.н.с.

Ведущая организация:

Научно-исследовательский институт физико-химической биологии имени А. Н. Белозерского Московского государственного университета имени М.В. Ломоносова

Защита состоится « 26 » июня 2019 г. в $10^{\underline{00}}$ часов

на заседании диссертационного совета Д 003.045.01 на базе Федерального государственного бюджетного учреждения науки Институт химической биологии и фундаментальной медицины СО РАН по адресу: 630090, Новосибирск-90, пр. Лаврентьева, 8

С диссертацией можно ознакомиться в библиотеке Федерального государственного бюджетного учреждения науки Институт химической биологии и фундаментальной медицины СО РАН и на сайте www.niboch.nsc.ru

Автореферат разослан «____» ____ 2019 г.

Учёный секретарь диссертационного совета,

к.х.н., доцент

Баль В. В.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность работы. Окислительное повреждение компонентов клетки является следствием аэробного дыхания, в ходе которого образуются активные формы кислорода. Их воздействие на ДНК может приводить к появлению, в основном, необъемных окислительных повреждений азотистых оснований. Эти повреждения удаляются системой эксцизионной репарации оснований ДНК, представляющей собой комплекс специфических ферментов. Начальные этапы процесса эксцизионной репарации оснований обеспечиваются ДНКгликозилазами, которые узнают поврежденное основание и за счет различных механизмов осуществляют гидролиз N-гликозидной связи в цепи ДНК. Одними из таких ферментов являются ДНК-гликозилазы Endo III и Endo VIII из *E. coli*, которые обладают субстратной специфичностью преимущественно к модифицированным пиримидиновым основаниям.

Несмотря на большой интерес к выяснению природы высокой специфичности ДНК-гликозилаз, непонятным остается вопрос, как именно ДНК-гликозилазы распознают поврежденные азотистые основания среди огромного числа неповрежденных нуклеотидов и какие именно аминокислотные остатки играют роль в процессе узнавания повреждения и его последующего химического превращения.

Целью данной работы было изучение в предстационарных условиях особенностей конформационной динамики фермент-субстратных комплексов в процессе образования каталитически-компетентного состояния на примере ДНК-гликозилаз Endo III и Endo VIII, принадлежащих к разным структурным суперсемействам. В задачи настоящего исследования входило:

- установление последовательности конформационных изменений в молекулах ферментов и ДНК-субстратов в ходе ферментативного процесса;
- определение ключевых аминокислотных остатков ферментов, участвующих на ранних стадиях узнавания поврежденного нуклеотида;
- выяснение роли каталитически-значимых аминокислотных остатков в конформационной динамике ферментов и их связывании с ДНКсубстратами;
- определение термодинамических параметров отдельных стадий взаимодействия ферментов с ДНК-субстратами.
 Положения, выносимые на защиту:
- Образование каталитически-компетентного состояния ДНК-гликозилазами Endo III и Endo VIII сопровождается взаимными последовательными конформационными превращениями и фермента и ДНК-субстрата.
- Аминокислотные остатки Leu81 у Endo III и Leu70 у Endo VIII выполняют функцию «сенсора» поврежденного нуклеотида на ранних стадиях узнавания повреждения.
- 3. Аминокислотные остатки Asp138 у Endo III и Glu2 у Endo VIII важны не только для осуществления каталитической реакции, но также играют важную роль в процессе образования фермент-субстратного комплекса.
- ДНК-гликозилазы Endo III и Endo VIII, принадлежащие к разным структурным суперсемействам, имеют общие термодинамические особенности узнавания поврежденного нуклеотида.

Научная новизна И практическая значимость работы. В представленной работе проведено кинетическое и термодинамическое исследование взаимодействия двух ДНК-гликозилаз Endo III и Endo VIII и их мутантных форм с ЛНК-субстратами различной степени специфичности. В работе было показано, что в процессе фермент-субстратного взаимодействия конформационные изменения претерпевают как ферменты, так и ДНКдуплексы. Сопоставление полученных данных о конформационной динамике молекул ферментов и ДНК-субстратов с известными рентгеноструктурными ланными позволило предложить молекулярно-кинетическую молепь взаимодействия Endo III и Endo VIII с ДНК, установить роль отдельных аминокислотных остатков в ферментативном процессе и определить термодинамические параметры отдельных стадий взаимодействия ферментов с ЛНК.

Публикации и апробация работы. По материалам диссертации опубликовано 4 печатные работы. Результаты диссертации были представлены на конференциях: VII Российский симпозиум «Белки и пептиды» (Новосибирск, 2015), конференция EEMGS (Копенгаген, Дания, 2016), 42 конгресс FEBS (Иерусалим, Израиль, 2017), VIII Российский симпозиум «Белки и пептиды» (Москва, 2017), 43 конгресс FEBS (Прага, Чехия, 2018), симпозиум «Системная биология репарации ДНК и программируемой клеточной гибели» (Новосибирск, 2018).

Структура и объем работы. Диссертация состоит из введения, обзора литературы, экспериментальной части, результатов, их обсуждения, заключения и списка литературы. Работа изложена на 131 странице, содержит 56 рисунков, 22 схемы и 18 таблиц. Библиография включает 196 литературных источников.

СОДЕРЖАНИЕ РАБОТЫ

1. Структура модельных ДНК-субстратов и методы исследования

В качестве специфических субстратов для ферментов Endo III и Endo VIII использовали олигодезоксирибонуклеотиды, содержащие в своей последовательности модифицированный нуклеотид 5,6-дигидроуридин (DHU) или AP-сайт (AP). Остаток 2-гидроксиметил-3-гидрокситетрагидрофурана использовали в качестве нерасщепляемого аналога АР-сайта (F). В качестве неспецифического субстрата для ферментов Endo III и Endo VIII использовали неповрежденные луплексы. Для флуоресцентной регистрации конформационных изменений в структуре олигодезоксирибонуклеотидов в одну из цепей вводили флуоресцентные аналоги азотистых оснований. Для конформационных изменений пепи солержащей регистрации ДНК. повреждение, использовали флуорофорную группу 2-аминопурина (2-аPu), 3'-стороны повреждения. расположенную с от Для регистрации конформационных изменений в комплементарной цепи, использовали флуорофорную группу 1,3-диаза-2-окософеноксазина (tC⁰), расположенную напротив повреждения. Для регистрации конформационной динамики ДНКдуплекса также использовали FRET-napy красителей FAM-BHO1. Флуорофорная группа FAM располагалась на 5'-конце цепи ДНК, содержащей Группа тушителя BHQ1 располагалась повреждение. на 5'-конце комплементарной цепи ДНК. Структуры использованных модифицированных

нуклеотидов и флуорофорных групп представлены на рисунке 1. Последовательности всех использованных в работе олигодезоксирибонуклеотидов представлены в таблице 1.

Рисунок 1. Структуры модифицированных нуклеотидов и флуорофоров, использованных в работе: 5,6-дигидроуридин (DHU), АР-сайт (АР), 2-гидроксиметил-3-гидрокситетрагидрофуран (F), 2-аминопурин (2-аРи), 1,3-диаза-2-окософеноксазин (tC^o), FAM, BHQ1.

Таблица 1. Последовательности олигодезоксирибонуклеотидов в составе ДНКдуплексов, использованных в работе

X/tC ⁰ 12	5'-d(CTCTC(X)CCTTCC)
X = DHU, AP, F, G	3'-d(GAGAG (tC ^O)GGAAGG)
AB/G12	5'-d(CTCTC(AP)CCTTCC)
AF/012	3'-d(GAGAG(G)GGAAGG)
X_2-aPu/G12	5'-CTCTC(X)(2-aPu)CTTCC
X = DHU, AP, F, G	3'-d(GAGAG(G)GAAGG)
DIIII / C ⁰ 12	5'-d(TCTCTC(DHU)CCTTCC)
DHU/tt: 13	3'-d(AGAGAG(tC ⁰)GGAAGG)
X/N13	5' $d(TCTCTC(\mathbf{X})CCTTCC)$
X = DHU, AP	$J = u(TCTCTC(\mathbf{x})CCTTCC)$
N = A, T, G, C	3'-d(AGAGAG(N)GGAAGG)
X/tC ⁰ 17	5'-d(TCTCTCTC(X)CCTTCCTT)
X = DHU, F, G	3'-d(AGAGAGAG(tC ⁰)GGAAGGAA)
DUU/C17	5'-d(TCTCTCTC(DHU)CCTTCCTT)
DH0/017	3'-d(AGAGAGAG(G)GGAAGGAA)
FAM_X/BHQ1_G17	5'-d(FAM-GCTCA(X)GTACAGAGCTG)
X = C, F, AP, DHU	3'-d(CGAGT(G)CATGTCTCGAC-BHQ1)

Поскольку узнавание и превращение субстратов в реакциях с Endo III и Endo VIII протекает в миллисекундном и секундном диапазонах, то для регистрации этих процессов использовали метод «остановленного потока», который позволяет смешивать фермент и субстрат в течение 1 мс. Кинетические кривые изменения интенсивности флуоресценции, отражающие конформационные превращения в ходе фермент-субстратного взаимодействия, анализировали помощью программы Dynafit, которая осуществляет численное интегрирование системы дифференциальных уравнений, соответствующих кинетической схеме, с одновременной оптимизацией констант скорости и коэффициентов удельной флуоресценции всех флуоресцирующих форм в данной схеме (*Кузнецов Н.А. дис. д-ра хим. наук, 2018*).

Для получения термодинамических параметров отдельных стадий процесса использовали данные, полученные путем регистрации изменений интенсивности флуоресценции в зависимости от времени при различных температурах. Для каждой температуры определяли значения индивидуальных констант скорости прямых и обратных реакций обратимых и необратимых стадий (k_i и k_{-i} , где i – номер стадии) и рассчитывали значения констант равновесия отдельных стадий многостадийного процесса образования промежуточных фермент-субстратных комплексов K_i (k_i/k_{-i}). Термодинамические параметры каждой *i*-ой стадии находили из зависимости между константой равновесия (K_i) и температурой, описываемой уравнением Вант-Гоффа (1):

$$\ln(K_i) = -\Delta G_i^0 / RT = -\Delta H_i^0 / RT + \Delta S_i^0 / R, \qquad (1)$$

где ΔG_i^0 – стандартная свободная энергия Гиббса, ΔH_i^0 – стандартная энтальпия, ΔS_i^0 – стандартная энтропия, R – универсальная газовая постоянная, T – температура в градусах Кельвина.

Из зависимости величины константы скорости необратимой химической стадии k_i от температуры, описываемой с помощью уравнения Эйринга теории переходного состояния, были рассчитаны значения стандартной энтальпии и энтропии активации (2):

$$\ln(k_{i}/T) = \ln(k_{\rm B}/h) + \Delta S^{0,\ddagger}/R - \Delta H^{0,\ddagger}/RT, \qquad (2$$

где k_i – константа скорости химической стадии, k_B – постоянная Больцмана, h – постоянная Планка, R – газовая постоянная, T – абсолютная температура в градусах Кельвина.

2. Конформационные изменения в структуре ДНК в процессе взаимодействия с Endo III

На сегодняшний момент известны кристаллические структуры свободного фермента Endo III из *E. coli* и комплекса фермента из *G. stearothermophilus* с ДНК (*Kuo et al., 1992; Fromme et. al., 2003*). Исходя из данных о кристаллической структуре, можно сделать вывод, что при связывании Endo III с ДНК происходят структурные перестройки в обоих биополимерах. Так, например, ДНК-дуплекс изогнут, а поврежденный нуклеотид вывернут из двойной спирали ДНК в активный центр фермента. При этом несколько аминокислотных остатков белка встроены в образовавшуюся полость, что стабилизирует внеспиральное положение поврежденного нуклеотида.

Для регистрации возникающих конформационных изменений в структуре ДНК в работе использовали ДНК-дуплексы, содержащие субстраты различной степени специфичности и флуорофорную группу tC⁰, расположенную в комплементарной цепи напротив повреждений, либо флуорофорную группу 2аРи, расположенную с 3'-стороны от повреждения.

Взаимодействие с G-лигандом

Как видно из рисунка 2А, связывание Endo III с неповрежденным G_2-аPu/G12-лигандом не вызывало значительного изменения интенсивности флуоресценции остатка 2-аPu. Однако, при регистрации неспецифического связывания Endo III с дуплексом G/tC⁰17, содержащим остаток гуанина напротив флуорофорной группы, наблюдали несколько фаз изменения интенсивности флуоресценции (рисунок 2Б). Можно выделить фазу падения интенсивности флуоресценции tC⁰, заканчивающуюся примерно к 10 мс, далее происходит рост интенсивности флуоресценции, достигающий максимальной амплитуды к 8 с, а затем еще одно падение интенсивности флуоресценции, выходящее на плато примерно к 100 с. С увеличением концентрации фермента

можно отметить увеличение амплитуды сигнала и более быстрое протекание всех фаз изменения флуоресцентного сигнала. Как видно из рисунка 2В, при понижении температуры некоторые изменения интенсивности флуоресценции tC^{0} пропадают. Для всех температур присутствует фаза падения интенсивности флуоресценции, заканчивающаяся примерно к 10 мс. Кроме того, для всех температур можно выделить фазу роста интенсивности флуоресценции. При этом, в температурном диапазоне от 20 до 37°C, после роста интенсивности флуоресценции наблюдается фаза падения флуоресцентного сигнала, которая отсутствует для кривых, полученных при 5, 10 и 15°C. При всех температурах были получены концентрационные серии, которые описывались схемой 1. Константы скорости и равновесия, полученные в результате обработки данных, представлены в таблице 2.

Рисунок 2. Изменение интенсивности флуоресценции 2-аРи (A) и tC⁰ (Б, В) в процессе взаимодействия Endo III с G-лигандами при изменении концентрации Endo III (Б), при изменении температуры (B). (A) [Endo III] = 4,0 мкМ, [G_2-aPu12] = 1,0 мкМ, T = 25°C, (Б) [G/tC⁰17] = 1,0 мкМ, T = 30°C, (В) [G/tC⁰17] = 1,0 мкМ, [Endo III] = 2,0 мкМ.

Схема 1

$$\mathbf{E} + \mathbf{S} \xrightarrow{k_1} [\mathbf{E} \cdot \mathbf{S}]_1 \xrightarrow{k_2} [\mathbf{E} \cdot \mathbf{S}]_2 \xrightarrow{k_3} [\mathbf{E} \cdot \mathbf{S}]_3$$

где Е – фермент, S – субстрат, [E·S]_i – фермент-субстратный комплекс

Взаимодействие с F-лигандом

регистрации конформационных изменений ДНК-дуплекса, При содержащего флуорофорную группу 2-аРи с 3'-стороны от F-сайта, на кинетических кривых, характеризующих образование фермент-субстратного комплекса, имеется лишь одна фаза изменения интенсивности флуоресценции (рисунок ЗА). Падение интенсивности флуоресценции 2-аРи свидетельствует об увеличении гидрофобности микроокружения в области остатка 2-аРи. Наиболее вероятным предположением причины такого изменения флуоресцентного сигнала может быть этап встраивания аминокислотных остатков Endo III в полость в ДНК-дуплексе, образующуюся из-за отсутствия комплементарного нуклеотида. Данный процесс соответствует схеме 2.

При этом связывание F-лиганда с ферментом Endo III вызывает двухфазные изменения интенсивности флуоресценции tC⁰ (рисунок 3Б). Так на кривых, полученных при всех температурах (рисунок 3В) присутствует быстрое падение интенсивности флуоресценции заканчивающееся примерно за 0,1 с. Следующая фаза падения интенсивности флуоресценции tC⁰ заканчивается примерно к 10 с, и согласуется с данными, полученными по флуоресценции 2-аРи. Полученные данные соответствовали схеме 3. Значения констант скорости и равновесия представлены в таблице 3.

Kowanaway	T, °C									
константы	5	10	15	20	25	30	37			
$k_1 \times 10^{-6}, \mathrm{M}^{-1}\mathrm{c}^{-1}$	27±2	30±4	45±5	52±5	61±4	70±10	72±3			
k_{-1}, c^{-1}	110±3	130±10	240±10	300±20	360±10	380±40	500±20			
${}^{a}K_{1} \times 10^{-6}, \mathrm{M}^{-1}$	0,25±0,01	0,23±0,04	0,19±0,02	0,18±0,02	0,17±0,01	0,17±0,03	0,15±0,01			
k_2, c^{-1}	0,034±0,006	0,15±0,05	0,33±0,01	$0,5 \pm 0,1$	$0,6\pm0,1$	0,9±0,3	1,0±0,2			
k_{-2}, c^{-1}	0,013±0,003	$0,04{\pm}0,01$	$0,078\pm0,004$	0,09±0,03	0,07±0,03	$0,12\pm0,06$	$0,5\pm0,1$			
K_2	2,6±0,8	4±2	4,2±0,2	5±3	9±4	8±5	2,0±0,6			
k_3, c^{-1}	-	-	-	0,004±0,002	0,014±0,004	0,017±0,003	$0,029\pm0,006$			
k_{-3}, c^{-1}	-	-	-	0,015±0,003	$0,050\pm0,004$	$0,05\pm0,02$	$0,09\pm0,04$			
<i>K</i> ₃	-	-	-	0,3±0,1	0,27±0,09	0,3±0,1	0,3±0,2			
${}^{6}K_{\rm ass} \times 10^{-5}, {\rm M}^{-1}$	7±2	8±5	8±1	3±1	4±1	4±1	1,0±0,4			

Таблица 2. Значения констант скорости и равновесия, характеризующих взаимодействие фермента Endo III с G/tC⁰17-лигандом

^a $K_i = k_i / k_{-i}$, ⁶ $K_{ass} = \prod_{j=1}^{j=i} K_j$

Таблица 3. Значения констант скорости и равновесия, характеризующих взаимодействие фермента Endo III с F-лигандом

Vanazauzu	F_2-aPu/	F/tC ⁰ 17, T, °C						
константы	G12	5	10	15	20	25	30	37
$k_1 \times 10^{-6}, \mathrm{M}^{-1}\mathrm{c}^{-1}$	0,13±0,01	90±20	100±20	100±20	100±10	160±20	172±6	190±30
k_{-1}, c^{-1}	0,30±0,03	120±10	150±20	170±20	210±20	300±50	395±6	530±30
$K_1 \times 10^{-6}, M^{-1}$	0,40±0,05	0,7±0,1	$0,7\pm0,1$	0,6±0,1	0,49±0,06	0,5±0,1	0,44±0,02	0,36±0,06
k_2, c^{-1}		-	-	-	$0,005\pm0,001$	$0,06\pm0,01$	0,19±0,01	0,23±0,06
k_{-2}, c^{-1}		-	-	-	0,17±0,04	$0,37{\pm}0,02$	0,804±0,003	$0,50\pm0,02$
K_2		-	-	-	0,03±0,01	$0,15\pm0,04$	0,24±0,01	$0,5\pm0,1$
$K_{\rm ass} \times 10^{-5}, {\rm M}^{-1}$		-	-	-	0,15±0,07	0,8±0,4	1,0±0,8	1,7±0,6

Рисунок 3. Изменение интенсивности флуоресценции 2-аРи (A) и tC⁰ (Б, В) в процессе взаимодействия Endo III с F-лигандами при изменении концентрации Endo III (A, Б), при изменении температуры (B). (A) $[F_2-aPu/G12] = 1,0$ мкМ, $T = 25^{\circ}$ C, (Б) $[F/tC^017] = 1,0$ мкМ, $T = 30^{\circ}$ C, (В) $[F/tC^017] = 1,0$ мкМ, [Endo III] = 2,0 мкМ. Схема 2

$$E + S \xrightarrow{k_1} E \cdot S$$

где Е – фермент, S – субстрат, E·S – фермент-субстратный комплекс Схема 3

$$\mathbf{E} + \mathbf{S} \xrightarrow{k_1} [\mathbf{E} \cdot \mathbf{S}]_1 \xrightarrow{k_2} [\mathbf{E} \cdot \mathbf{S}]_2$$

где Е – фермент, S – субстрат, [E·S]_i – фермент-субстратный комплекс

Взаимодействие с АР-субстратом

На рисунке 4А представлены кинетические кривые изменения интенсивности флуоресценции 2-аРи, находящегося в дуплексе, содержащем АР-сайт. Можно выделить несколько фаз изменения флуоресцентного сигнала: рост интенсивности флуоресценции примерно до 0,2 с, падение (0,2 – 3 с), повторный рост (3 – 15 с), и стадия плато, начинающаяся с 15 с.

При взаимодействии Endo III с AP/tC⁰12 субстратом, зарегистрированные изменения интенсивности флуоресценции tC⁰ также содержали несколько фаз (рисунок 4Б). Первая фаза падения интенсивности флуоресценции продолжалась до 10 мс, как и в случае с F-лигандом. Вторая стадия падения интенсивности флуоресценции продолжалась с 10 мс до 1 с. Обе фазы падения интенсивности флуоресценции tC⁰ отражают связывание ДНК и последующее узнавание AP-сайта, что приводит к формированию каталитического комплекса. При этом последующая реакция β -элиминирования, приводящая к образованию разрыва в поврежденной цепи и высвобождению продукта, сопровождается увеличением интенсивности флуоресценции tC⁰ на временах больше 1 с и выходит на плато к 20-30 с.

Полученные кинетические кривые (рисунок 4A и 4Б) описывались схемой 4 и позволили рассчитать константы скорости реакций (таблица 4). В случае tC^O-содержащего AP-субстрата, константа скорости первой стадии начального связывания в 23 раза больше, чем для 2-аPu-содержащего AP-субстрата. Константа скорости необратимой каталитической реакции для 2аPu-содержащего AP-субстрата $k_{cat} = 0.38 \pm 0.02$ с⁻¹ в 3 раза быстрее, чем для tC^O $k_{cat} = 0.13\pm0.01$ с⁻¹. Такое различие согласуется с данными, полученными прямой регистрацией продуктов реакции методом гель-электрофореза. Это может быть связано с тем, что наличие в ДНК флуорофорной группы tC^O влияет на активность фермента, поскольку размер флуорофорной группы превышает размер природных гетероциклических оснований.

Рисунок 4. Изменение интенсивности флуоресценции 2-аРи (А) и tC^{0} (Б) в процессе взаимодействия Endo III с AP-субстратами при изменении концентрации Endo III, T = 25°C. (A) [AP_2-aPu/G12] = 1,0 мкМ, (Б) [AP/tC⁰12] = 1,0 мкМ.

Схема 4

$$E + S \xrightarrow{k_1} [E \cdot S]_1 \xrightarrow{k_2} [E \cdot S]_2 \xrightarrow{k_{cat}} [E \cdot P] \xrightarrow{K_P} E + P$$

где E – фермент, S - субстрат, $[E:S]_i$ – фермент-субстратные комплексы, [E:P] – комплекс фермент-продукт, P – продукт реакции.

Взаимодействие с DHU-субстратом

Для получения данных о конформационных изменениях ДНК в ходе полного ферментативного цикла при взаимодействии с Endo III, были использованы ДНК-дуплексы, содержащие остаток 5,6-дигидроуридина. На полученных кривых изменения интенсивности флуоресценции 2-аPu (рисунок 5A) присутствует фаза падения флуоресцентного сигнала до 20 с. Последующая фаза роста флуоресцентного сигнала, по-видимому, отражает каталитический этап и стадию диссоциации комплекса фермент-продукт.

При взаимодействии Endo III с DHU-субстратом, изменения интенсивности флуоресценции tC⁰ имели такой же вид, что и для AP-субстрата (рисунок 5Б). После образования каталитически-компетентного комплекса происходят две реакции: гидролиз N-гликозидной связи и реакция β -элиминирования. Сравнение с кривыми, полученными для AP-субстрата, показывает, что дополнительная стадия гидролиза N-гликозидной связи приводит к сдвигу фазы роста в сторону большего времени. Изменения на кинетических кривых также соответствовали схеме 4. Значения констант скорости и равновесия приведены в таблице 5.

Рисунок 5. Изменение интенсивности флуоресценции 2-аРи (A) и tC^o (Б, B) в процессе взаимодействия Endo III с DHU- субстратами при изменении концентрации Endo III (A, Б), при изменении температуры (B). (A) [DHU_2-aPu/G12] = 1,0 мкМ, T = 25°C, (Б) [DHU/tC⁰17] = 1,0 мкМ, T = 30°C, (B) [DHU/tC⁰17] = 1,0 мкМ, [Endo III] = 2,0 мкМ.

I concentration of	ДНК				
константы	AP_2-aPu/G12	AP/tC ⁰ 12			
$k_1, M^{-1}c^{-1}$	$(3,4\pm0,6)\times10^{6}$	$(8\pm 2) \times 10^7$			
k_{-1}, c^{-1}	6±1	360±50			
$K_1 \times 10^{-6}, \mathrm{M}^{-1}$	0,6±0,2	0,20±0,06			
k_2, c^{-1}	0,47±0,04	5±2			
k_{-2}, c^{-1}	0,06±0,02	0,6±0,1			
K_2	8±3	8±3			
$k_{\rm cat},{\rm c}^{-1}$	0,38±0,02	0,13±0,01			
$K_{\rm ass} \times 10^{-6}, {\rm M}^{-1}$	5±3	2±1			
$K_{\rm P} \times 10^5$, M	1,1±0,6	1,5±0,5			

Таблица 4. Значения констант скорости, характеризующие взаимодействие фермента Endo III с АР-субстратом

Таблица 5. Значения констант скорости и равновесия, характеризующих взаимодействие фермента Endo III с DHU-субстратом

I/ an amount i	DHU_2-aPu/		DHU/tC ⁰ , T, °C						
константы	G12	5	10	15	20	25	30	37	
$k_1 \times 10^{-6}$, M ⁻¹ c ⁻¹	95±5	50±7	63±11	88±8	98±16	116±5	127±30	144±7	
k_{-1}, c^{-1}	670±30	47±6	63±11	88±15	111±17	145±11	166±16	210±35	
$K_1 \times 10^{-6}, \mathrm{M}^{-1}$	0,14±0,01	0,4±0,2	1,0±0,3	1,0±0,2	0,9±0,2	$0,8\pm0,1$	0,8±0,2	$0,7\pm0,1$	
k_2, c^{-1}	0,29±0,09	2,1±0,7	2,6±0,4	3,5±0,3	3,8±0,4	3,8±0,4	5,3±1,2	9,5±1,5	
k_{-2}, c^{-1}	0,04±0,02	$1,0\pm0,1$	$1,3\pm0,1$	2,0±0,4	4,1±0,5	$5,5\pm0,2$	7,2±1,3	14,5±1,2	
K_2	7±3	$2,2\pm0,7$	$1,9\pm0,4$	$1,8\pm0,4$	$0,9\pm0,1$	$0,7\pm0,1$	$0,7\pm0,2$	$0,65\pm0,12$	
$k_{\rm cat},{\rm c}^{-1}$	0,054±0,009	0,027±0,006	$0,045\pm0,007$	0,13±0,03	$0,27\pm0,06$	$0,39{\pm}0,04$	0,41±0,09	0,8±0,2	
$K_{\rm ass} \times 10^{-6}, {\rm M}^{-1}$	1,0±0,5	0,9±0,8	2±1	$1,8\pm0,8$	0,8±0,3	0,6±0,2	0,6±0,3	0,5±0,1	
$K_{\rm P} \times 10^6$, M	0,16±0,06	0,3±0,2	0,3±0,2	0,6±0,5	0,7±0,6	2±1	1±1	3±2	

3. Анализ термодинамических параметров взаимодействия Endo III с ДНК-лигандами и субстратами

Используя значения констант скорости отдельных реакций обратимых стадий, соответствующих определенному механизму, были рассчитаны константы равновесия этих стадий при разных температурах. Для определения термодинамических параметров ΔH^0 и ΔS^0 взаимодействия Endo III с ДНК были построены зависимости $\ln(K_i)$ и $\ln(k_{cat}/T)$ от 1/T (рисунок 6).

Образование первого комплекса для любого из исследованных ДНКлуплексов сопровожлается отрицательным изменением энтальпии и положительным изменением энтропии, что указывает на схожую природу взаимодействий на этапе образования начального фермент-субстратного комплекса (таблица 6). Наиболее вероятно это связано с плавлением ДНК в точке контакта и конформационными изменениями в ДНК-связывающем центре фермента. Изменения интенсивности флуоресценции tC⁰ при образовании первичного комплекса свидетельствуют о нарушении стэкинга оснований в области флуорофора. Такое нарушение конформации ДНК в случае специфического и неспецифического комплексов может быть результатом попыток фермента вывернуть нуклеотид вне зависимости от того поврежден он или нет. Кроме этого, на всех доступных структурах комплексов различных ДНК-гликозилаз с неповрежденной ДНК, в ДНК уже внедрен «вклинивающийся» аминокислотный остаток фермента. Таким образом, можно прелположить. что молекулярные события, приводящие к падению интенсивности флуоресценции tC⁰ на первой стадии связывания с ДНК, включают внедрение аминокислотного остатка-«сенсора», в роли которого у Endo III может выступать Leu81, в двойную спираль, что влияет на микроокружение tC⁰ в полностью комплементарном неповреждённом ДНКдуплексе.

Рисунок 6. Зависимость $\ln(K_i)$ (A-B) и $\ln(k_{cat}/T)$ (Г) в соответствии с уравнениями Вант-Гоффа и Эйринга, характеризующая взаимодействие Endo III с G/tC⁰-лигандом (A), F/tC⁰-лигандом (Б), DHU/tC⁰-субстратом (В, Г).

Вторая стадия взаимодействия с DHU-субстратом и F-лигандом также приводит к падению интенсивности флуоресценции tC⁰, что отражает образование каталитически компетентного состояния. Вторая стадия для DHUхарактеризуется отрицательным изменением субстрата энтальпии И отрицательным изменением энтропии. На данном этапе поврежденный нуклеотид выворачивается в активный центр фермента, и образуются новые контакты между аминокислотными остатками в активном центре и основанием DHU. Кроме того, новые контакты образуются и между аминокислотными остатками Leu81 и Gln41 в процессе их встраивания в ЛНК. При этом структура фермент-субстратного комплекса становится более жесткой и компактной, что объясняет уменьшение энтропии.

Таким образом, при сравнительном анализе термодинамических данных было установлено, что общие термодинамические изменения между процессами связывания Endo III со специфическим и неспецифическим дуплексом имеют четкие качественные отличия. Суммарное связывание с G- и F-лигандами характеризуется положительным изменением энтропии и энтальпии, но в случае связывания с DHU-субстратом – это полностью энтальпийно-контролируемый процесс.

4. Конформационная динамика ДНК-субстратов при взаимодействии с мутантными формами фермента Endo III К120А и D138А

Для выяснения влияния каталитических аминокислотных остатков Lys120 и Asp 138 на этапы начального взаимодействия Endo III с ДНК, были получены мутантные формы, содержащие замены Lys120 и Asp138 на аланин. Анализ каталитической активности путем регистрации продуктов реакции с использованием радиоактивно-меченных ДНК-субстратов, содержащих остатки DHU и AP-сайт, показал, что обе мутантные формы не проявляют ферментативной активности.

Однако, при анализе взаимодействия мутантной формы Endo III К120А с DHU-субстратом были зарегистрированы кинетические кривые изменения интенсивности флуоресценции tC⁰, характеризующие стадии образования фермент-субстратного комплекса (рисунок 7А). Действительно, в отличие от фермента дикого типа, на кинетических кривых отсутствует фаза роста интенсивности флуоресценции, которая характеризует накопление продукта реакции и диссоциацию комплекса фермент-продукт. Полученные данные соответствовали кинетической схеме 3. Константы скорости отдельных стадий приведены в таблице 7.

Необходимо отметить, что замена D138A приводила к полной потере каких-либо конформационных изменений DHU-субстрата, в процессе взаимодействия с мутантной формой фермента (рисунок 7Б).

Таким образом, можно заключить, что Lys120 принимает участие не только в каталитическом процессе, но также важен при образовании первичного комплекса с ДНК и последующего узнавания повреждения, поскольку замена К120А значительно замедляет конформационные изменения ДНК. При этом замена второго каталитического остатки D138A приводит к полной потери способности Endo III нарушать структуру двойной цепи ДНК.

днк	Номер стадии	∆ <i>Н</i> ⁰ , ккал/моль	Δ <i>S</i> ⁰ , кал/(моль×К)	$\Delta G^{0}{}_{298},$ ккал/моль	Описание стадии
	1	-2,6±0,3	15,1±1,1	-7,1±0,1	Первичное связывание, предположительное встраивание Leu81, уменьшение полярности окружения tC ⁰
$C \mu C^0$	2	5,5±1,5	22±5	-1,3±0,3	Предположительное встраивание Gln41, увеличение полярности окружения tC ⁰
G/IC	3	2,3±0,5	5,3±1,4	0,7±0,2	Попытка выворачивания какого-либо основания в активный центр фермента, уменьшение полярности окружения tC ⁰
	Σ	5,2±2,3	42,4±7,8	-7,7±0,6	
F#C0	1	- 3,5±0,4	14±1	-7,8±0,1	Первичное связывание, предположительное встраивание Leu81, уменьшение полярности окружения tC ⁰
F/IC	2	17,0±0,1	53,3±0,5	1,1±0,2	Предположительное встраивание Gln41, уменьшение полярности окружения tC ⁰
	Σ	13,5±0,5	67,3±1,5	-6,7±0,3	
	1	-2,4±0,2	19±1	-8,0±0,1	Первичное связывание, предположительное встраивание Leu81, уменьшение полярности окружения tC ⁰
	2	-7,5±1,2	-25±4	0,2±0,1	Предположительное встраивание Gln41, образование каталитически компетентного комплекса, уменьшение полярности окружения tC ⁰
DHU/tC ⁰	Σ	-9,9±1,4	-6,0±5,0	-7,8±0,3	
	3*	18±2*	-1,0±0,1*	18±2*	Переходное состояние каталитической химической реакции, увеличение полярности окружения tC ⁰
	4	-11±2	9±6	-7,9±0,5	Образование комплекса с продуктом реакции, увеличение полярности окружения tC ^O

Таблица 6. Термодинамические параметры взаимодействия ДНК-гликозилазы Endo III с G- и F-лигандами и DHU-субстратом

*Рассчитано по уравнению (2) Таблица 7. Значения констант скорости и равновесия, характеризующих взаимодействие фермента Endo III K120A с DHU-субстратом

Константы	DHU/tC ⁰ 13
$k_1 \times 10^{-6}, M^{-1}c^{-1}$	8±2
k_{-1}, c^{-1}	60±20
$K_1 \times 10^{-5}, \mathrm{M}^{-1}$	1,3±0,5
k_2, c^{-1}	5±1
k_{-2}, c^{-1}	12±2
K_2	0,4±0,1
$K_{\rm ass} \times 10^{-4}, {\rm M}^{-1}$	5±3

Рисунок 7. Изменение интенсивности флуоресценции tC° в процессе взаимодействия DHU-субстрата с (A) Endo III K120A, (Б) Endo III D138A. [DHU/ tC°] = 1,0 мкМ, [Endo III D138A] = 3,0 мкМ.

5. Конформационные изменения мутантных форм Endo VIII

Для поэтапного определения очередности встраивания аминокислотных остатков фермента Endo VIII в ДНК-дуплекс было выделено несколько мутантных форм фермента, содержащих замены некоторых аминокислотных остатков на Тгр, для повышения чувствительности флуоресцентного сигнала и наблюдения конформационных изменений вблизи новых остатков Trp. Аминокислотные остатки Туг71, Phe121, Phe230 и Pro253 были заменены на остаток триптофана. Остатки Phe121, Phe230 и Pro253 расположены в структуре фермента в ДНК-связывающем центре, в непосредственной близости от каталитической аминокислоты Pro1 и связанной ДНК. Замена Leu70 и Туг71 на Тгр позволила регистрировать изменения интенсивности флуоресценции Trp. нахоляшегося в непосредственной близости от поврежденного основания. Дополнительно остаток Leu70 был заменен на Ser. Анализ активности полученных мутантных форм фермента Endo VIII L70S, L70W, Y71W, F121W, F230W и P253W показал, что наибольшим эффектом на активность оказывает замена Leu70 (рисунок 8). Мутантные формы L70W и L70S практически теряли способность катализировать расшепление AP-сайтов. и обладали слабой активностью по отношению к DHU-субстрату. Замены остальных аминокислотных остатков на Тгр не приводили к значительному снижению активности фермента.

Α

Рисунок 8. Степень расщепления радиоактивно-меченных AP-И DHUсубстратов ферментом Endo VIII за 500 секунд. Взаимодействие Endo VIII с АРсубстратом: [AP/G13] = 1.0 мкМ. [Endo VIII] = 1,0 мкМ. Взаимодействие Endo VIII с DHU-субстратом: [DHU/G13] = 1,0 мкМ, [Endo VIII] = 2,0 мкМ.

Методом «остановленного потока» были зарегистрированы изменения интенсивности флуоресценции остатков Trp, характеризующие конформационные изменения фермента в ходе взаимодействия мутантных форм Endo VIII с AP- и DHU-субстратами (рисунок 9). Анализ полученных данных выявил, что замена Leu70 на Trp либо Ser значительно влияет на конформационную динамику ферментов, по сравнению с другими мутантными формами, использованными в работе.

A

Рисунок 9. Изменение интенсивности флуоресценции Тгр мутантных форм Endo VIII при взаимодействии с (А) АР-субстратом, (Б) DHU-субстратом ([Endo VIII] = 2,0 мкМ, [ДНК-субстрат] = 4,0 мкМ).

Изменения интенсивности флуоресценции остатков Trp, находящихся в мутантных формах L70S и L70W имели схожий характер. Для мутантных форм Y71W, F121W, F230W, P253W взаимодействие с AP- и DHU-субстратом соответствовало кинетической схеме 5, предложенной ранее для фермента дикого типа (Kuznetsov *et al.*, 2012). Для мутантных форм L70S и L70W взаимодействие с AP- и DHU-субстратом соответствовало кинетической схеме 6. Константы скорости и равновесия приведены в таблицах 8 и 9.

Таблица 8. Значения констант скорости и равновесия, характеризующих взаимодействие мутантных форм фермента Endo VIII с АР-субстратом

10	Мутантные формы Endo VIII								
константы	L70S	L70W	Y71W	F121W	F230W	P253W			
$k_1 \times 10^{-6}, M^{-1}c^{-1}$	0,09±0,01	0,11±0,02	14±2	16±1	18±8	18±3			
k_{-1}, c^{-1}	0,90±0,03	0,60±0,05	170±20	130±10	80±30	130±30			
$K_1 \times 10^{-5}, M^{-1}$	$1,0\pm0,1$	1,8±0,4	0,8±0,1	1,2±0,1	2±1	1,4±0,4			
k_2, c^{-1}	-	-	21±2	35±3	25±6	37±4			
k_{-2}, c^{-1}	-	-	1,4±0,1	0,9±0,3	1,0±0,3	1,9±0,5			
K_2	-	-	15±2	40±10	30±10	19±6			
k_3, c^{-1}	-	-	0,13±0,01	0,8±0,1	0,9±0,1	0,35±0,02			
k_{-3}, c^{-1}	-	-	1,0±0,1	3,0±0,6	5±1	1,9±0,2			
K_3	-	-	0,13±0,02	0,27±0,06	0,19±0,05	0,18±0,02			
$k_{\rm cat}, {\rm c}^{-1}$	0,09±0,01	0,080±0,007	0,29±0,03	0,41±0,05	$1,0\pm0,1$	0,45±0,08			
$K_{\rm ass} \times 10^{-6}, {\rm M}^{-1}$	-	-	0,16±0,02	1,3±0,3	1,0±0,3	0,48±0,05			
$K_{\rm P} \times 10^6$, M	0,18±0,02	0,2±0,1	0,11±0,01	1,5±0,4	1,1±0,6	1,4±0,2			

Таблица 9. Значения констант скорости и равновесия, характеризующих взаимодействие мутантных форм фермента Endo VIII с DHU-субстратом

10			Мутантные ф	ормы Endo VII	I	
константы	L70S	L70W	Y71W	F121W	F230W	P253W
$k_1 \times 10^{-6}, \ M^{-1}c^{-1}$	0,09±0,02	0,06±0,01	21±3	40±10	30±2	27±2
k_{-1}, c^{-1}	1,0±0,1	0,4±0,1	330±30	120±30	310±50	310±30
$K_1 \times 10^{-5}, \mathrm{M}^{-1}$	0,9±0,2	1,5±0,5	0,6±0,1	3±1	1,0±0,2	0,9±0,1
k_2, c^{-1}	-	-	16±3	17±4	21±3	23±3
k_{-2}, c^{-1}	-	-	2,5±0,1	0,6±0,3	1,2±0,1	0,8±0,1
K_2	-	-	6±1	30±20	18±3	29±5
k_3, c^{-1}	-	-	0,4±0,1	0,6±0,2	0,82±0,04	1,00±0,03
k_{-3}, c^{-1}	-	-	1,1±0,1	0,9±0,1	0,66±0,06	1,2±0,1
<i>K</i> ₃	-	-	0,4±0,1	0,7±0,2	1,2±0,1	0,83±0,07
$k_{\rm cat}, {\rm c}^{-1}$	0,09±0,01	0,08±0,03	0,14±0,03	0,26±0,09	0,38±0,01	0,40±0,03
$K_{\rm ass} \times 10^{-6}, \ {\rm M}^{-1}$	-	-	0,14±0,04	6±2	2,2±0,2	2,2±0,2
$K_{\rm P} \times 10^6$, M	1,0±0,2	0,7±0,5	0,4±0,1	0,6±0,1	0,6±0,2	0,63±0,08

Схема 5

$$\mathbf{E} + \mathbf{S} \xrightarrow{k_1} [\mathbf{E} \cdot \mathbf{S}]_1 \xrightarrow{k_2} [\mathbf{E} \cdot \mathbf{S}]_2 \xrightarrow{k_3} [\mathbf{E} \cdot \mathbf{S}]_3 \xrightarrow{k_{\text{cat}}} [\mathbf{E} \cdot \mathbf{P}] \xrightarrow{K_{\text{P}}} \mathbf{E} + \mathbf{P}$$

где Е – мутантные формы фермента Endo VIII Y71W, F121W, F230W, P253W, S – АРлибо DHU-субстрат, Р – продукт реакции, $[E\cdotS]_i$ – комплексы Endo VIII с ДНКдуплексом, k_i и $k_{\cdot i}$ – константы скорости прямых и обратных реакции каждой стадии, k_{cat} – константа скорости каталитической реакции, K_P – константа диссоциации комплекса фермент-продукт.

Схема 6

$$E + S \xrightarrow{k_1} [E \cdot S]_1 \xrightarrow{k_{cat}} [E \cdot S] \xrightarrow{K_P} E + P$$

где Е – мутантные формы фермента Endo VIII L70S и L70W, S – AP- либо DHU-субстрат, P – продукт реакции, $[E:S]_i$ – комплексы Endo VIII с ДНК-дуплексом, k_i и k_i – константы скорости прямых и обратных реакции каждой стадии, k_{cat} – константа скорости каталитической реакции, K_P – константа диссоциации комплекса фермент-продукт.

6. Сравнение конформационной динамики ДНК-субстратов при взаимодействии с ферментом Endo VIII дикого типа и его мутантной формой E2Q

Для установления этапов ферментативного процесса, на который могла бы повлиять замена каталитического остатка Glu2, была сконструирована мутантная форма Endo VIII E2Q. Полученные данные о конформационной динамике С- и F-лигандов, а так же AP- и DHU-субстратов приведены на рисунке 10.

А

Рисунок 10. Изменение интенсивности FRET сигнала при взаимодействии (A) Endo VIII WT с ДНК-субстратами и лигандами, (Б) Endo VIII E2Q с ДНК-субстратами и лигандами ([Endo VIII] = 3,0 мкМ, [ДНК] = 1,0 мкМ).

При взаимодействии фермента Endo VIII WT и его мутантной формы E2Q со всеми использованными ДНК-дуплексами наблюдается уменьшение FRETсигнала на начальном участке кинетических кривых. Такое изменение отражает сближение концов ДНК-дуплекса, вызванное его изгибанием, при котором происходит более эффективное тушение эмиссии флуорофорной группы FAM. Из рентгеноструктурных данных известно, что при связывании фермента Endo VIII с ДНК, содержащей повреждение, происходит изгибание дуплекса, таким образом, согласно кинетическим данным, процесс изгибания ДНК происходит уже на этапе образования неспецифического комплекса. Поскольку Endo VIII WT и E2Q могут расщеплять субстраты с AP-сайтом, стадия увеличения интенсивности флуоресценции отражает каталитический процесс и последующую диссоциацию комплекса фермент-продукт. При взаимодействии Endo VIII дикого типа с ДНК-субстратом, содержащим

остаток DHU в качестве специфического повреждения, изменения на кинетических кривых и их форма очень похожи на кривые, полученные для АР-субстрата. В случае фермента Endo VIII, содержащего мутацию E2O, полученные данные имеют другой вид. Известно, что данная замена аминокислот приводит к потере способности фермента катализировать гидролиз N-гликозилазной связи. На полученных кривых изменения интенсивности флуоресценции можно выделить фазу падения, как было показано в случае неповрежденного С-лиганда. При этом параметры образования комплекса с DHU-субстратом имеют близкие значения с параметрами для С- и F-лигандов. Кинетические кривые, характеризующие взаимодействие Endo VIII WT с AP- и DHU-субстратами, а также Endo VIII E2O с АР-субстратом соответствовали кинетической схеме 7. Взаимодействие Endo VIII WT с С- и F-лигандами, а так же взаимодействие Endo VIII E2Q с С- и F-лигандами и DHU-субстратом соответствовало кинетической схеме 2. Рассчитанные константы скорости и равновесия приведены в таблице 10. Схема 7

$$\mathbf{E} + \mathbf{S} \xrightarrow{k_1} [\mathbf{E} \cdot \mathbf{S}]_1 \xrightarrow{k_2} [\mathbf{E} \cdot \mathbf{S}]_2 \xrightarrow{k_{\text{cat}}} [\mathbf{E} \cdot \mathbf{P}] \xrightarrow{k_4} \mathbf{E} + \mathbf{P}$$

где E – фермент, S-субстрат, $[E \cdot S]_i$ – фермент-субстратные комплексы, $[E \cdot P]$ – комплекс фермент-продукт, P – продукт реакции.

L'amazare a	Endo VIII WT							
константы	С-лиганд	F -лиганд	АР-субстрат	DHU-субстрат				
$k_1 \times 10^{-6}, M^{-1}c^{-1}$	53±17	47±6	35±4	27±1				
k_{-1}, c^{-1}	70±20	200±40	190±30	150±20				
$K_1 \times 10^{-6}, M^{-1}$	0,7±0,3	0,20±0,05	0,20±0,03	0,20±0,02				
k_2, c^{-1}	-	-	6±1	5,0±0,4				
k_{-2}, c^{-1}	-	-	2,6±0,8	$0,6{\pm}0,1$				
<i>K</i> ₂	-	-	2,3±0,9	8±2				
$k_{\rm cat}, {\rm c}^{-1}$	-	-	10±2	9±1				
k_4, c^{-1}	-	-	2,8±0,8	8,1±0,6				
$K_{\rm ass},{\rm M}^{-1}$	-	-	(5±2)×10 ⁵	(1,6±0,6)×10 ⁶				
10	Endo VIII E2Q							
константы	С-лиганд	F -лиганд	АР-субстрат	DHU-субстрат				
$k_1 \times 10^{-6}, M^{-1}c^{-1}$	50±10	63±8	30±1	64±8				
k_{-1}, c^{-1}	60±10	160±50	240±80	250±30				
$K_1 \times 10^{-6}, M^{-1}$	0,7±0,3	0,4±0,1	0,12±0,04	0,26±0,05				
k_2, c^{-1}	-	-	3,8±0,9	-				
k_{-2}, c^{-1}	-	-	1,0±0,2	-				
<i>K</i> ₂	-	-	4±1	-				
$k = c^{-1}$		_	2 0+0 6	-				
n _{cat} , c	-	-	2,0±0,0					
k_{4} , c ⁻¹	-	-	1,3±0,9	-				

Таблица 10. Константы скорости и равновесия взаимодействия Endo VIII WT и E2Q, полученные при анализе данных FRET

7. Анализ термодинамических параметров взаимодействия Endo VIII с ДНК-лигандами и субстратами

Для регистрации конформационных изменений в ДНК-субстратах в работе использовали 17-звенные ДНК-дуплексы содержащие флуорофорную группу tC⁰ напротив 5,6-дигидроуридина, выступающего в качестве специфичного повреждения. Так же в работе использовали ДНК-дуплекс, содержащий нерасщепляемый аналог АР-сайта – остаток тетрагидрофурана (F), который имитирует промежуточный продукт ферментативной реакции – АР-сайт. Неспецифичный ДНК-дуплекс содержал остаток гуанина напротив флуорофорной группы tC⁰. Полученные данные приведены на рисунке 11.

Рисунок 11. Изменение интенсивности флуоресценции tC^O в процессе взаимодействия Endo VIII с (А) G-лигандом, (Б) F-лигандом, (В) DHU-субстратом при изменении температуры. [ДНК] = 1,0 мкМ, [Endo VIII] = 3,0 мкМ.

На всех полученных кривых присутствует начальная фаза роста интенсивности флуоресценции tC⁰. Наблюдаемое изменение может отражать локальное плавление двойной спирали ДНК и встраивание аминокислотных остатков фермента в ДНК-дуплекс. Взаимодействие Endo VIII с G-лигандом соответствовало 2. При обработке полученных схеме данных, характеризующих взаимодействие Endo VIII с F-лигандом, была определена минимальная кинетическая схема реакции, соответствующая двум обратимым стадиям образования фермент-субстратного комплекса (схема 3). По полученными для G-лиганда, сравнению с данными, изменения на кинетических кривых в случае F-лиганда обладают большей амплитудой, что может говорить как о большей эффективности образования комплекса между ферментом и ДНК, так и о больших конформационных перестройках, возникающих в структуре ДНК-дуплекса. При регистрации взаимодействия Endo VIII с ДНК-субстратом, содержащим остаток DHU, были получены кинетические кривые, содержащие четыре фазы изменения интенсивности флуоресценции: две последовательные фазы роста, фазу падения, и ещё одну фазу роста. При обработке данных, был получен механизм реакции, включающий три стадии образования фермент-субстратного комплекса, которые, по-видимому, отражают различные этапы связывания Endo VIII с ДНК, одну необратимую стадию, которую можно соотнести с каталитической стадией, и одну обратимую стадию диссоциации комплекса фермент-продукт (схема 5). Из рассчитанных констант равновесия были построены зависимости $\ln(K_i)$ от 1/T(K), которые имели линейный вид (рисунок 12) Исходя из параметров линейных уравнений. были рассчитаны значения изменения энтальпии и энтропии, полученные значения представлены в таблице 11.

Рисунок 12. Зависимость $\ln(K_i)$ (A-B) и $\ln(k_{cat}/T)$ (Г) в соответствии с уравнениями Вант-Гоффа и Эйринга, характеризующая взаимодействие Endo VIII с (А) G/tC⁰-лигандом, (Б) F/tC⁰-лигандом, (В, Г) DHU/tC⁰-субстратом.

При анализе термодинамических параметров взаимодействия Endo VIII с ДНК-субстратами, удалось выделить некоторые общие особенности. Для первой стадии образования фермент-субстратного комплекса величина изменения ΔG°_{L298} является схожей: -7,2±0,1 – для G-лиганда, -7,4±0,2 – для Fлиганда, -7,0±0,1 – для DHU-субстрата. Помимо схожего временного диапазона изменения интенсивности tC⁰, энергетика данной стадии является практически одинаковой. Это говорит о том, что до 10 мс со всеми использованными ДНК-дуплексами происходит один и тот же процесс. Повидимому, при образовании первичного комплекса Endo VIII с ДНК не происходит дискриминация поврежденного нуклеотида, а более глубокое «триалы» Gln69–Leu70–Tvr71 внедрение аминокислотных остатков происходит позже, при образовании последующих фермент-субстратных комплексов. Для всех использованных субстратов первичное связывание с небольшим ферментом сопровождается уменьшением энтальпии И повышением энтропии. Отрицательное значение энтальпии может указывать на образование энергетически выгодных контактов между ДНК-дуплексом и ферментом. Повышение энтропии, вероятно, связано с локальным плавлением ДНК-дуплекса.

Термодинамический анализ второй стадии связывания Endo VIII с ДНКдуплексами, которая была зарегистрирована в случае F-лиганда и DHUсубстрата, выявил различие в протекании этого процесса. В случае F-лиганда значение $\Delta G^{\circ}_{2.298}$ является положительным, что говорит о невыгодности протекания этого процесса, и, по-видимому, данное изменение не происходит при низких температурах. При этом в случае DHU-содержащего субстрата вторая стадия образования фермент-субстратного комплекса является энергетически нейтральной.

днк	Номер стадии	ΔH^0 , ккал/моль	ΔS ⁰ , кал/ (моль×К)	ΔG ⁰ ₂₉₈ , ккал/моль	Описание стадии
G/tC ^O	1	-3,6±0,9	12±3	-7,2±0,1	Первичное связывание, попытка вклинивания остатка Leu70, увеличение полярности окружения tC ⁰
F/tC ^O	1	-2,8±0,3	16±1	-7,4±0,2	Первичное связывание, вклинивание остатка Leu70, увеличение полярности окружения tC ⁰
	2	15±3	47±9	0,8±0,2	Изгибание двойной спирали ДНК, увеличение полярности окружения tC ^O
	Σ	12,2±3,3	60±10	-6,6±0,4	
DHU/tC ⁰	1	-0,7±0,1	21,3±0,4	-7,0±0,1	Первичное связывание, вклинивание аминокислотного остатка Leu70, увеличение полярности окружения tC ⁰
	2	1,0±0,2	5,5±0,6	-0,7±0,2	Встраивание аминокислотного остатка Туг71 в ДНК, уменьшение полярности окружения tC ⁰
	3	3,9±0,7	17±2	-1,1±0,2	Образование каталитически-компетентного комплекса
	Σ	4,2±1	43,8±3	-8,8±0,5	
	4*	14,4±0,1*	-12,4±0,5*	18±2*	Катализ, увеличение полярности окружения tC ⁰
	5	-4,5±0,6	5±2	-6,2±0,3	Образование комплекса с продуктом реакции, увеличение полярности окружения tC ⁰

Таблица 11. Термодинамические параметры взаимодействия Endo VIII с G- и F-лигандами и DHU-субстратом

*Рассчитано по уравнению (2)

У обоих ДНК-дуплексов эта стадия сопровождается увеличением ΔH^{0} и ΔS^{0} . Согласно полученным ранее данным (Kuznetsova *et al.*, 2014), на этой стадии происходит изгибание дуплекса, которое должно сопровождаться выворачиванием поврежденного нуклеотида в активный центр фермента и полным встраиванием всех остатков «триады» Gln69–Leu70–Tyr71 в двойную спираль ДНК.

На третьей стадии взаимодействия Endo VIII с DHU-субстратом, которая предшествует каталитической реакции, происходит окончательная подстройка структуры активного центра для осуществления каталитической стадии. Значительный рост энтропии на этой стадии, скорее всего, связан с десольватацией полярных групп в области контакта фермент–ДНК, а также вытеснением молекул воды из бороздок ДНК-субстрата. Положительная величина изменения энтальпии ΔH° свидетельствует о затратах энергии для создания каталитически активной конформации.

Затем следует необратимая каталитическая стадия, в ходе которой образуются разрывы сахаро-фосфатного остова ДНК с 5'- и 3'-стороны. Последней стадией взаимодействия Endo VIII с DHU-субстратом является стадия диссоциации фермент-субстратного комплекса. Необходимо отметить, что ΔG^{o}_{298} (-6,2±0,3 ккал/моль) этой стадии имеет близкое значение с ΔG^{o}_{298} первичного связывания ДНК (от -7,0 до -7,4 ккал/моль).

выводы

- Показано, что конформационные превращения фермент-субстратных комплексов, образованных ДНК-гликозилазой Endo III дикого типа и ее мутантными формами, а также мутантными формами ДНК-гликозилазы Endo VIII с поврежденной и неповрежденной ДНК, происходят через последовательность стадий с образованием нескольких промежуточных состояний.
- Установлено, что ДНК-гликозилазы Endo III и Endo VIII, принадлежащие к разным структурным суперсемействам, используют стратегию раннего узнавания поврежденного нуклеотида с помощью вклинивания в ДНКдуплекс аминокислотных остатков – «сенсоров» повреждения, которыми выступают Leu70 у Endo VIII и Leu81 у Endo III.
- 3. Показано, что замена каталитических аминокислотных остатков Lys120 и Asp138 на Ala приводит к потере у фермента Endo III как N-гликозилазной, так и AP-лиазной активности. При этом мутантная форма Endo III K120A обладает способностью связываться с ДНК, а замена D138A приводит к блокированию начальных стадий связывания ДНК. Замена каталитического остатка E2Q у Endo VIII сопровождается потерей лишь N-гликозилазной, но не AP-лиазной активности.
- 4. Впервые получены термодинамические параметры быстропротекающих стадий взаимодействия ДНК-гликозилаз Endo III и Endo VIII с ДНКсубстратами. Установлено, что затраты энергии на образование каталитически компетентных состояний фермент-субстратных комплексов, компенсируются за счет увеличения энтропии, вероятно, вследствие дегидратации области контакта фермента с ДНК-субстратом.

Основные результаты диссертации опубликованы в следующих работах:

1. Kuznetsov N.A., **Kladova O.A.**, Kuznetsova A.A., Ishchenko A.A., Saparbaev M.K., Zharkov D.O., Fedorova O.S. Conformational dynamics of DNA repair by *Escherichia coli* endonuclease III // J. Biol. Chem. – 2015. – V. 290. – \mathbb{N} 23. – P. 14338-14349.

2. Kladova O.A.; Kuznetsov, A.A.; Fedorova O.S.; Kuznetsov N.A. Mutational and kinetic analysis of lesion recognition by *Escherichia coli* Endonuclease VIII // Genes (Basel). $-2017. - V. 8. - N_{\odot} 5. - P. 140-153.$

3. Kladova O.A., Krasnoperov L.N., Kuznetsov N.A., Fedorova O.S. Kinetics and thermodynamics of DNA processing by wild type DNA-glycosylase Endo III and its catalytically inactive mutant forms // Genes (Basel). -2018. - V. 9. - N = 4. - P. 190-208.

4. Кладова О.А., Кузнецов Н.А., Федорова О.С. Термодинамические параметры взаимодействия эндонуклеазы VIII с поврежденной ДНК // Асta Naturae. – 2019. – Т. 11. – № 1. – С. 29-37.