Nanomedicine for the Route of Administration (RoA): L3 Oral L4 Pareneteral

David Clarke

Professor of Drug Delivery, University of Manchester, UK

Lecture Series at the

Institute of Chemical Biology & Fundamental Medicine for Siberian Branch of Russian Academy of Sciences

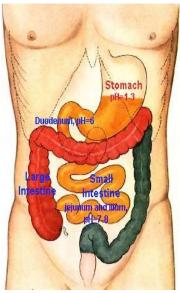
Please do not reproduce & disseminate in breach of © Copyright material included.

L3: Nanomedicine for the route of administration (RoA) Intended learning outcomes:

- To understand different epithelia in terms of the physical, chemical and biological barriers to drug delivery
- To apply this understanding at the nano-scale to see how nanoparticles improve drug delivery at the main routes of administration (RoA):
 - oral \rightarrow intestine (gut)
 - patches \rightarrow skin
 - inhalers \rightarrow lung

For large and small molecule drugs:

• To introduce L4: 'Overcoming biological barriers ...'

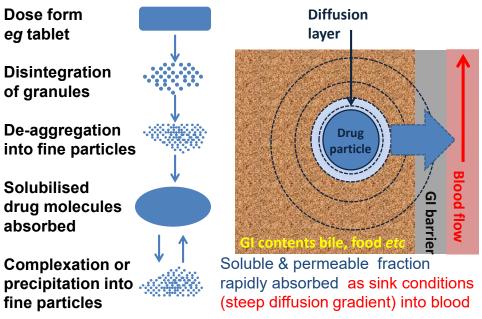

L3: Oral \rightarrow intestines

Stomach:

- Very acidic pH 1 \rightarrow 3
- low surface area for drug absorption
- emptying delayed by food, but empties often without food

Small intestine:

- neutral pH, enzymes destroy biologicals
- very high surface area and excellent blood supply for absorption into body
- but absorption into blood suffers (1st pass) metabolism in liver
- bile acids (cholate surfactants) disperse lipids to absorb into intestine lymphatic system, which avoids metabolism in liver



Biopharmaceutics Classification System (BCS) & Regulation - Biowaiver eligibility

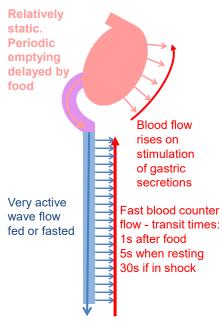
Reliability of predicting bioavailability from dissolution studies

High permeability	High solubility Class I High solubility High permeability Eligible for Biowaiver	Low Solubility Class II Low solubility High permeability Eligible for Biowaiver only if weak acids, highly soluble at pH6.8, plus dissolution	Highly soluble when largest dose is soluble in <250mL water over pH from 1.0 to 7.5
Low Permeability	Class III	Class IV	Highly permeable
	High solubility	Low solubility	when >90%
	Low permeability	Low permeability	absorption of the
	Eligible for Biowaiver if	Not eligible for	administered
	very rapidly dissolving	Biowaiver	dose

Dissolution of Dose Forms

Permeation, log P, pH & log D

- pH partition absorption of ionised drugs depends on dissociation constant (K_a or pK_a) & partition coefficient (P or LogP):
- Distribution coefficient (D) is the 'effective' partition coefficient, accounting for the degree of ionisation:


weak acids: $D = [HA_{org}] / \{ [HA_{aq}] + [A_{aq}] \}$ weak bases: $D = [B_{org}] / \{ [B_{aq}] + [BH_{aq}] \}$

D depends on pH and is related to P for a weakly basic drug:
 Log D = log P - log {1 + antilog (pK_a - pH) }

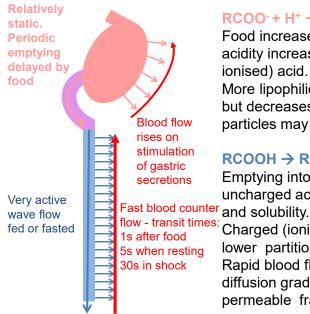
D can be approximated at any pH using the pK_a of the drug.

 Many limitations *eg* not stirred – convective flow, ionised may also be absorbed, different (lower) pH at membrane surface, secretions, disruption of lipid membrane (*eg* surfactants, QACs) AND BIOLOGICAL TRANSPORT – see L4.

Revision: weakly basic drug generalisations

$RNH_{2} + H^{+} \rightarrow RNH_{3}^{+}$

Food increases time for dissolution, acidity increases % protonated (charged) base and solubility of drug. Charged (protonated) base less lipophilic & less permeable.


$RNH_3^+ \rightarrow RNH_2 + H^+$

Emptying into increased pH reduces % protonated base and solubility, precipitate particles may form

Uncharged base more lipophilic & permeable

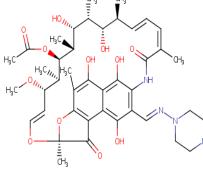
Rapid blood flow maintains high diffusion gradient from particles

Revision: weakly acidic drug generalisations

$RCOO^{-} + H^{+} \rightarrow RCOOH$ (HA)

Food increases time for dissolution. acidity increases % uncharged (nonionised) acid.

More lipophilic & permeable, but decreases solubility, precipitate particles may form. Less surface area.


$RCOOH \rightarrow RCOO^{-} + H^{+}$

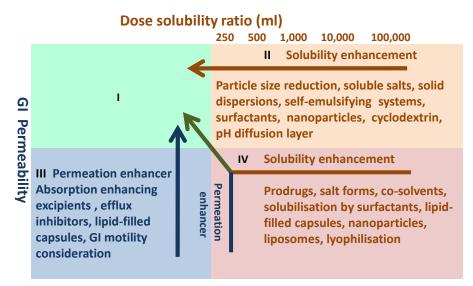
Emptying into increased pH reduces % uncharged acid, increases % ionised

Charged (ionised) acid less lipophilic & lower partition into lipid. Rapid blood flow maintains high diffusion gradient for solubilised & permeable fraction of drug.

Case Study: Rifampicin

One of oldest effective TB treatments, but major issue with variable oral bioavailability. MW 823 Da & LogP 4.2 (un-ionized) with a weak acid (pK_a 6.9) & a weak base (pK_a ~8) affecting solubility & permeability along GI tract.

	рН	Solubility mg/ml	Log D	Permeability cm/s	
	1.4	125.5	-1.27	Stomach	
	2.4	11.4	-0.23	0.02	
	3	1.15	0.76		
	3.5	0.75	0.95		
	4	0.99	0.83	Duodenum	
	4.5	1.25	0.73	0.62	
	5.2	1.53	0.64		
	6	1.65	0.61	Jejunum	
	6.8	2.54	0.42	0.24	
	7.4	3.35	0.3	0.4 Illeum	
	8	5.44	0.09	0.12 Colon	
、	Pienhama Drug Dianaa (2005) 26: 221 224				


Biopharm. Drug Dispos. (2005) 26: 321–334

Major issues with poor drug solubility

40% of new (small molecule) drugs are poorly soluble or lipophilic compounds (combinatorial chemistry and high throughput screening over the last 2 decades):

- Poor bioavailability → Sub-optimal dosing
- Food effects: fed/fasted variation in bioavailability
- Lack of dose-response proportionality
- Harsh excipients eg excessive use of co-solvents
- Use of extreme basic or acidic conditions to enhance solubilisation
- Uncontrollable precipitation after dosing
- Patient non-compliance inconvenience of the dose form

Summary of approaches to shift solubilitydissolution & permeation characteristics

Nanoparticle engineering

Reducing particle size is important in solubilisation:

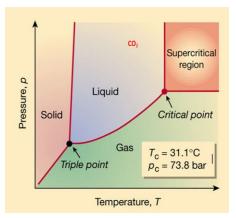
a) increases surface area (A)

dm / dt = $k (C_s - C)$

where the rate constant k = DA / h (Noyes Whitney)

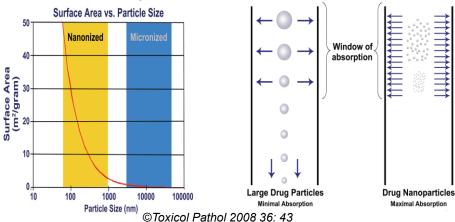
eg 5 μ m \rightarrow 120 nm increases A by 41.5 X

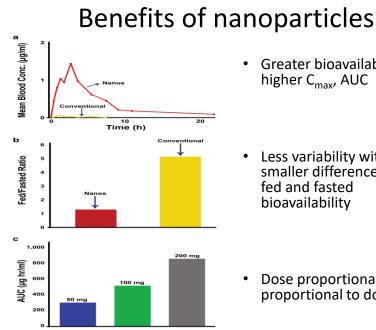
- b) reduces diffusion layer thickness (h)
- c) increases saturation solubility (S)
 - S = S_o exp (2 χ M / r ρ RT) *eg* >10-15% increase on reduction to 100 nm diameter


where χ crystal interfacial tension, M molecular weight, r particle radius, ρ density

Supercritical fluids (SCFs eg CO₂)

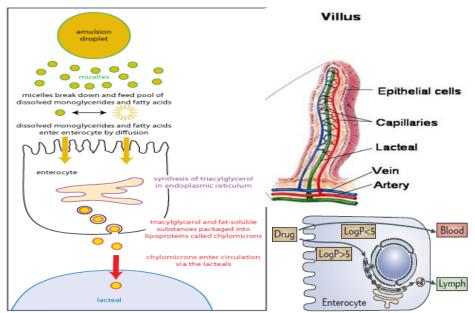
SCFs assume the properties of both a liquid and a gas: highly compressible, allowing small changes in P or T to greatly alter their density, mass transport and solvating power


SCF-solubilisation of drugs


- avoids toxic organic solvents
- makes small particle sizes possible
- 5 2,000 nm in diameter

Surface area v. particle size & improved absorption

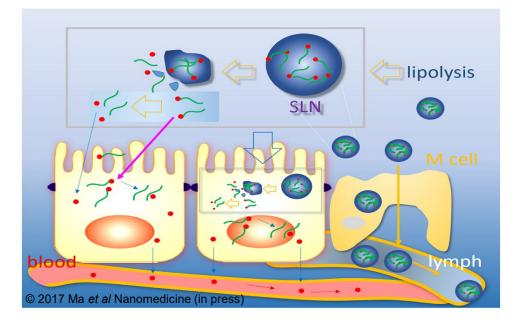
Higher absorption in small intestine because of higher surface to mass ratio of small particle suspension, and greater dissolution in the transit time through the small intestine – window of absorption



©Toxicol Pathol 2008 36: 43

- Greater bioavailability: higher C_{max}, AUC
- Less variability with food: smaller difference between
- Dose proportionality: AUC proportional to dose

Lymphatic absorption of lipids/fats

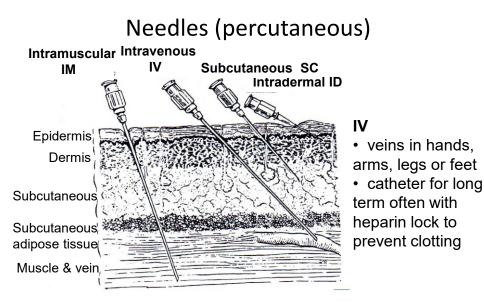


Lipid-based formulations

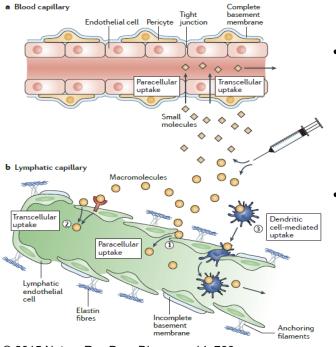
- Lipid in the duodenum (<2g ~ 2 capsules or food) stimulates secretion of biliary lipids (cholate surfactants), generating colloidal micelles, mixed micelles, vesicles & emulsion droplets.
- Digestion of lipids is an important step for the bioavailability enhancement of lipid solutions:
- Solubilising and absorption effect from reactivity of triglycerides and surfactants with the walls of the gastrointestinal tract
- Absorption into the intestinal lymphatics (lacteals) and then into the systemic circulation, avoiding firstpass metabolism in the liver

	Туре І	Type II SEDDS	Type III A SMEDDS	Type III B	Type IV SNEDDS
Triglycerides	100%	40-80%	40-80%	<20%	
Water insoluble surfactants HLB <12		20-60%			0-20%
Water-soluble surfactants HLB>12			20-40%	20-50%	30-80%
Hydrophilic co- solvents			0-40%	20-50%	0-50%
Particle size	Coarse	>100 nm	<100nm	50- 100nm	<50nm
Aqueous dilution	Limited	Unaffected	Some loss	Phase changes	Phase changes
Digestibility	Crucial	Not crucial, but likely	Not crucial, but may inhibit	Not required	Not required

Lipid formulation classification (Poulton)


Lipid nanoparticle absorption

L4: Parenteral Routes of Admin (RoAs)


- One third oral \rightarrow GI tract (gut)
- Two thirds parenteral routes of administration (RoA)
- Growth in parenteral:
 - avoid problems of GI tract
 - device control of delivery
 - nanomedicines
 - biologics

Parenteral is derived from Greek *para enteron* - avoid intestines – any route other than into mouth / GI tract

RoA	Share %
Oral	32
Pulmonary	27
Nasal	11
Injection	9
Transdermal	8
Other	13

IM, **SC**, **ID** routes more limited on volume and hypertonic formulations generally avoided.

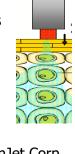
 Blood capillaries have tight junctions

 small molecules pass

Lymphatic
 capillaries have
 wide junctions
 – large & small
 molecules pass

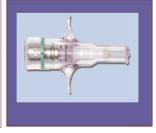
© 2015 Nature Rev Drug Discovery 14: 786

Painless & needle-free injectors

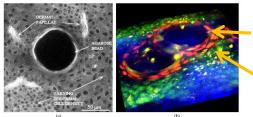

Re-usable & needle-free injectors:

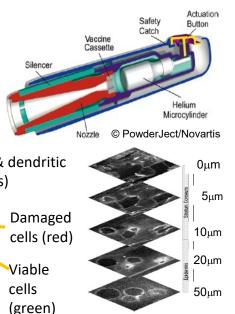
- some spring-powered with thousands of uses, others use high pressure gas to force drug through skin
- subcutaneous, intradermal or intramuscular administration bioequivalent with regular needle injection

Many examples - a few below:


© MiniJect (BioValve)

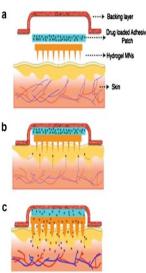
© PenJet Corp

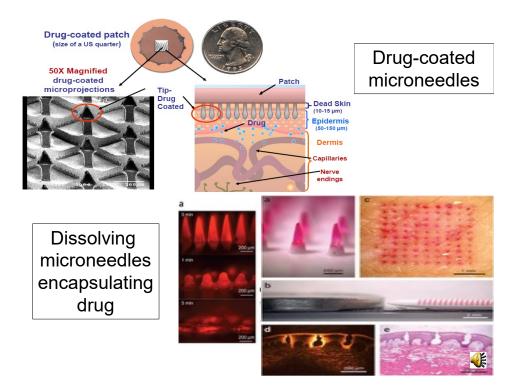


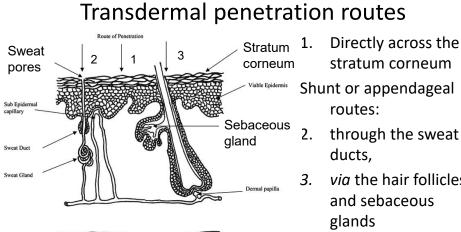

PowderJect (Novartis) injector

Gas burst acceleration of drug particles to super-sonic speeds:
Gas bursts drug cassette (0.5-5 mg)
burst shock front passes down nozzle, carrying particles
Supersonic Mach 2-2.5 → 1.5 @exit

• highly potent drugs & vaccines

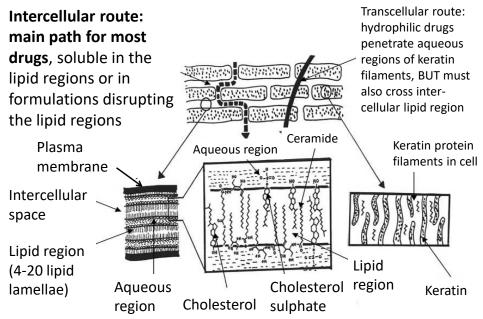

Particles shot thru skin to epidermis & dendritic cells (vaccine - antigen presenting cells)





Microneedle patches

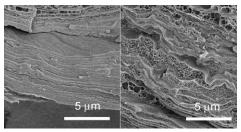
- Skin pierced with short needles to deliver drugs in a minimally-invasive manner - for small molecules, proteins and nanoparticles from extended-release patches:
- (i) increase skin permeability by creating micron-size pathways in skin,
- (ii) actively drive drugs into the skin during microneedle insertion,
- (iii) microneedles pierce thru dead skin (stratum corneum), across the epidermis & into the superficial dermis too.


Transdermal penetration routes

- through the sweat
- vig the hair follicles and sebaceous

Skin penetration enhancement focused on increasing transport across the stratum corneum.

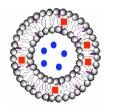
Appendages small area for permeation (~ 0.1% area), small contribution except: iontophoretic drug delivery primarily via the shunt routes as less electrical resistance.

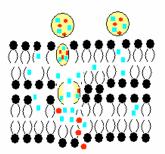

Inter-cellular >> transcellular penetration

SC modification: hydration

Water widely used & safe to increase skin penetration of hydrophilic and lipophilic permeants:

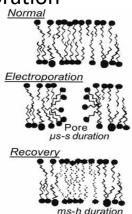
- alters drug solubility & partitioning
- hydration swells and opens
 SC structure → increased
 penetration.


Water content ~15 - 20% of dry weight, but hydration varies:


- occlusion with transdermal patches, plastic films, paraffins, oils, waxes as components of ointments and water-in-oil emulsions that prevent water loss from skin
- oil-in-water emulsions that donate water into skin.

SC modification: liposomes & lipid particles

Liposomes hydrate and alter lipid layers, especially where lipids similar to stratum corneum lipids

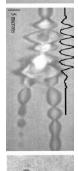

 Deformable liposomes or transfersomes: 10-25% surfactant with 3-10% ethanol, act as "edge activators", conferring deformability, allowing them to squeeze through channels less than one-tenth their diameter.

Powered patches - electroporation

- Short, high-voltage pulses reversibly disrupt lipid lamellae of strateum corneum (SC):
- electric field initially concentrated in SC (higher resistance than deeper layers).
- As SC made permeable, resistance drops, electric field distributes into the deeper tissues, with sensory & motor neurons

Pain & muscle stimulation avoided by using closely-spaced microelectrodes that constrain the electric field to within the SC. Electroporation used with microneedle patches.

Electro-pores persist for hours, increasing diffusion by orders of magnitude for drugs, peptides, proteins & nucleic acids.

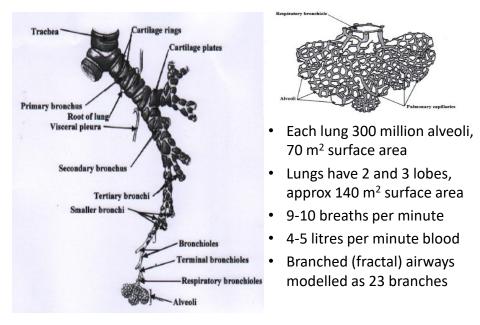

Powered patches - phonophoresis

Ultrasound is an oscillating pressure wave at a frequency too high for humans to hear.

- Increases permeability to small, lipophilic compounds
- Dominant effect disrupts stratum corneum lipid lamellae structure
- Formation, oscillation and collapse of bubbles in an ultrasonic pressure field increases delivery

Pulsed lasers similarly used to increase skin permeability by a related shockwave mechanism.

Lung RoA: benefits of inhaling drugs


Local treatment (*eg* asthma, lung diseases)

- Rapid onset of action
- Avoids drug degradation in gut
- Avoids 1st pass metabolism
- Low dose avoids toxicity
- Controls dose
- Small volume
- Container protects drug

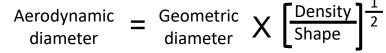
Systemic RoA into blood:

- Avoids drug interactions
- Avoids variable pharmacokinetics of oral administration
- Acute pain *eg* fentanyl, morphine
- Fragile drugs: biologics eg rapid-acting insulin, calcitonin for osteoporosis etc

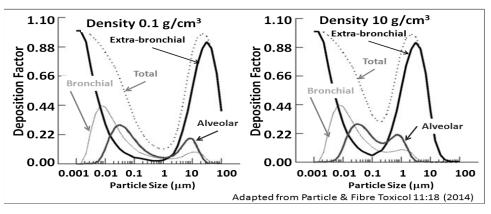
Lung airways branch: bronchi to alveoli

Inhaler devices

- 1. Sprays useful for upper respiratory tract
- 2. Pressurized metered dose inhalers (pMDIs) - solvent propellants
- **3.** Super fine particle inhalers for small airways disease (SAD)
- 4. Nebulisers: drug in polar solvent usually water
- 5. Dry powder inhalers (DPIs)– no solvent propellant
 - dry powder fluidises when patient inhales

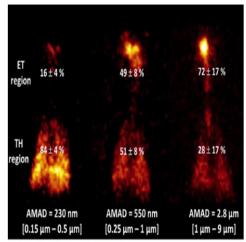

Twisthaler

Nexthaler


Why & where do particles deposit?

Easyhaler

• Inertial impaction & gravitational sedimentation:



• Diffusion (nanoparticle sizes only)

Case study: small airways disease

- Child model (baboon ape), images of deposition of 3 different aerodynamic diameter (AMAD) particles
- ET extrathoraxic regions
- TH thoraxic
- Colour from:
- yellow/lighter image (high deposition) to
- brown/darker image (low deposition).

© PLoS ONE 9(4): e95456 (2014)

Nanoparticles for RoA

- Oral:
 - NPs increase surface area and drug solubilisation
 - lipid NPs absorb via lymphatic pathway
- Skin penetrate dead skin layer:
 - painless injectors
 - microneedle , ultrasound & electroporation patches
 - lipid NPs / liposomes fluidize lipid lamellae
- Lung:
 - increase deposition in alveolae (avoids upper airways)
 - systemic absorption into blood
- L6 & 7: barrier penetration (epithelia & endothelia)