L7 Overcoming biological barriers & L8 Targeting organs & diseased tissue

David Clarke

Professor of Drug Delivery, University of Manchester, UK

Lecture Series at the

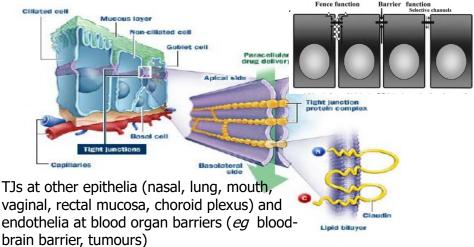
Institute of Chemical Biology & Fundamental Medicine for Siberian Branch of Russian Academy of Sciences

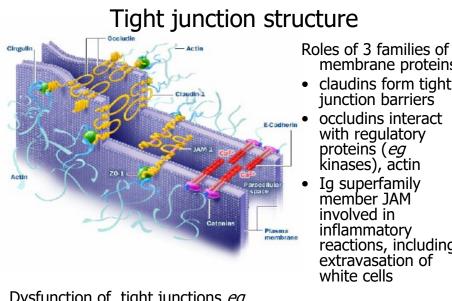
Please do not reproduce & disseminate in breach of $\ensuremath{\mathbb{C}}$ Copyright material included.

Penetration & targeting of membrane barriers

Intended learning outcomes

To understand the penetration of membrane barriers in improving the bioavailability and targeting of drugs:


- a) epithelial membrane barriers, including
- protein absorption eg insulin
- absorption enhancers
- chronic lung infection targeting
- choroid plexus CSF secretion & targeting of brain
- b) endothelial membrane barriers including
- blood brain barrier (BBB) targeting of brain
- tumour & infection targeting


Introduction: targeting tissues by selective penetration / transport at membrane barriers

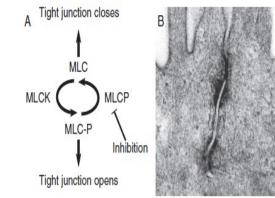
Transporters at blood & tissue side of barriers **Epithelial** Endothelial selective for each organ. transport transport Pharma's ideal 'Rule of Intestine Kidney 5' drugs unselective, penetrate all barriers, suffer drug efflux, 1st Lung Liver Nasal pass metabolism etc. Many large & hydrophilic CSF Brain (eq viruses, proteins, hormones) fail Ro5 but [CSF = cerebroselectively transport at Î spinal fluid] organ & tissue barriers.

Tight junction biology

Tight junctions (TJs) connect epithelial & endothelial cells \rightarrow (1) polarity fence functions, and (2) barrier functions regulating permselective passage of molecules across tissue membranes

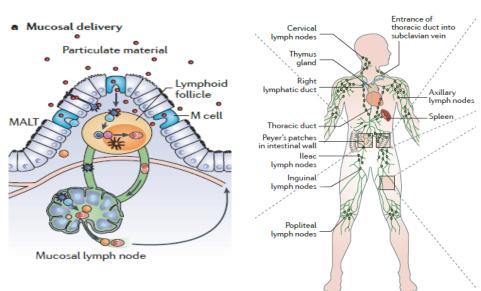
membrane proteins: claudins form tight

- junction barriers occludins interact
- with regulatory proteins (*eg* , kinases), actin
- Iq superfamily member JAM involved in inflammatory reactions, including extravasation of white cells


Dysfunction of tight junctions eq @ epithelia: jaundice (biliary), diarrhoea (GIT) @ endothelia: edema (tissue swelling)

Tight junction opening & closing

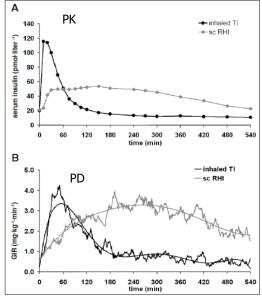
• Opens


phophorylation of myosin light chains (MLC) by myosin light chain kinase (MLCK) contraction & opening

 Closes dephosphorylation of MCL-P reverses & closes

Many cytokines & pathogens affect TJ barriers

- Increasing or protecting barrier function:
 - EGF, TGF-, GDNF, neurturin,84 IL-10, IL-17
- Decreasing barrier function:
 - IFN-γ, TNF-α, HGF, TGF-α, IGF-I , IGF-II, VEGF, IL-1, IL-4, IL-13
- Functional changes (tight junction proteins targeted)
 - Clostridium perfringens (claudin-3, -4)
 - Vibrio cholerae (occludin)
 - reovirus (JAM)
 - Coxsackievirus and adenovirus (CAR)
 - Dermatophagoides pteronyssinus (occludin, claudin-1) dust mite allergy
- Change in actin by modulation of Rho & myosin kinase
 - Clostridium diphtheriae & difficile, pathogenic E. coli
- Indirect mechanisms such as phosphokinase C & other activations: Bacteroides fragilis, Helicobacter pylori, rotavirus


Mucosal lymphatic delivery

© 2015 Macmillan Publishers, Nature Review Drug Discovery 14: 782

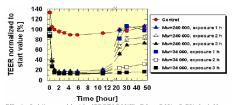
Case study: insulin inhalers

MannKind Dreamboat Afrezza DPI provides fastacting mealtime insulin (Phase 3 / approved). Technosphere 2-3 μ m particles of fumaryl diketopeparzine freeze dried with insulin into a dry powder.

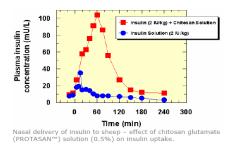
©Mannkind Afrezza®

Epithelial permeation enhancer approaches

- · Aggregation inhibitors
- Charge modification
- pH control
- Degradative enzyme inhibitors
- · Mucolytic or mucous clearing
- Biomembrane penetration
- Vasodilators
- Selective transport


How is each likely to effect membrane permeation?

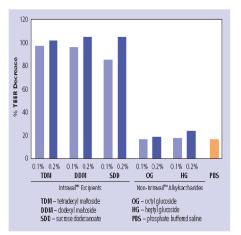
Example: chitosan permeability enhancement


Increased bioavailability of proteins, peptides and small molecule drugs at epithelial barriers (*eg* nasal in figures across right)

Two possible effects:

- slowing clearance from mucus layers by cationic polymer binding to negatively-charged sialic acid in mucous polymer
- opening of tight junctions, which re-seal in the case of higher molecular weight chitosans

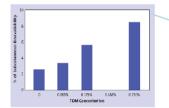
Effect of chitosan chloride (PROTASAN™, DA = 84%, 0.5% (w/v)) with high and low molecular weights on Trans-Epithelial Electrical Resistance (TEER) of Caco-2 cell monolayers after different exposure times. Each data point reoresents the mean of 3 replicate samples.

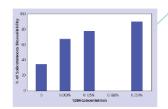


[©] NovaMatrix ® FMC BioPolymer AS Norway

Example: alkyl saccharide permeability enhancement

Sugar-based surfactants:

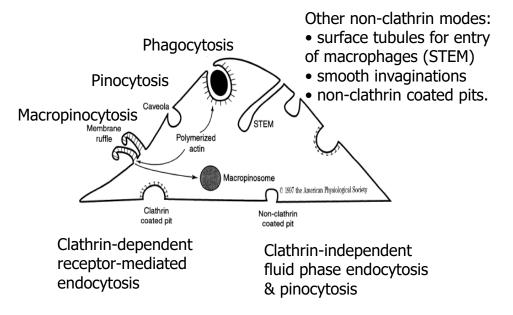

- single chain (octyl glucoside) widely used as a gentle detergent, but with much less permeability enhancement than
- multi-chain alkyl saccharides *eg* Intravail[™] group (*eg* large decrease in TEER value, across right)


© Aegis Therapeutics LLC

Example: alkyl saccharide enhanced bioavailability of proteins

TDM: oral/GIT heparin absorption

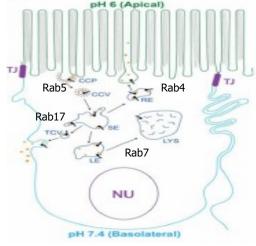
TDM: pulmonary heparin absorption



	Drug	Approximate Molecular Weight	Bioavailability at 0.125% TDM	References
->	Intestinal LIMWH	5kDa	6%	Yang <i>et al.</i> , 2005
	Pulmonary insulin	6kDa	22%-24%	Hussain and Ahsan, 2005
7	Pulmonary LMWH	5kDa	80%	Yang <i>et al.</i> , 2004; 2005
	Antisense polynucle otide	7kDa	Up to 18%	Aegis unpublished observations

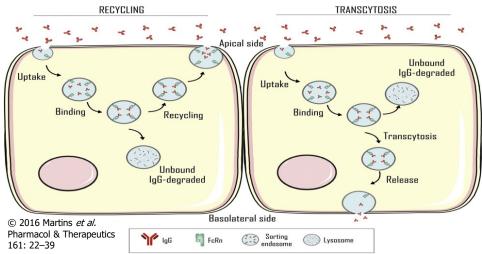
Approx. Molecular weight	Intranasal bioavailability at 0.125% TDM	Intranasal bioavailability at 0.250% TDM
4kDa	55%*	96%*
6kDa	54%	62%
16kDa	58%	74%
22kDa	30%	50%
30kDa	12%	28%
	Molecular weight 4kDa 6kDa 16kDa 22kDa	Molecular weight bioa vailabili ty at 0.125% TDM 4kDa 55% * 6kDa 54% 16kDa 58% 22kDa 30%

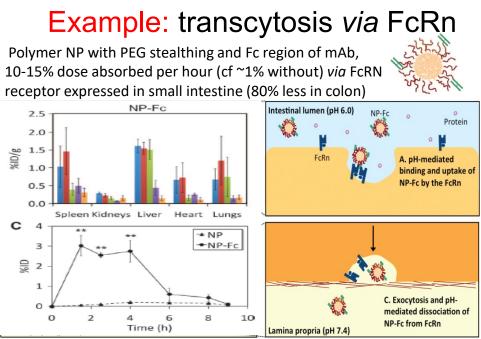
© Aegis Therapeutics LLC


Revision: endocytosis

Transcytosis across membrane barriers

Transport of large hydrophilic proteins, nanoparticles *etc* across epithelial & endothelial barriers by endocytosis and exocytosis


- Endocytosis systems at each pole not shown
- Common sorting (SE) compartments
 - to recycle to poles (RE),
 - to degrade contents via late endosomes (LE) or
 - to sort into transcytosis vesicles (TCV), which secrete (exocytosis) across cells.
- Rab GTPase proteins associated with control of each stage of vesicle traffic



© Curr Opin Struct Biol. 2010 April; 20(2): 226–233.

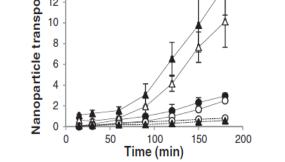
FcRn recycling & transcytosis

At mucosal barriers (gut, lung..), Fc endocytosis at the apical side (external) transfers *via* sorting vesicles to exocytosis on the basolateral side. Like recycling, FcRn binds at acidic pH & releases at neutral pH.

© 2013 Pridgen et al. Science & Translational Med 5(213): 213ra167

Intestinal transcytosis receptors

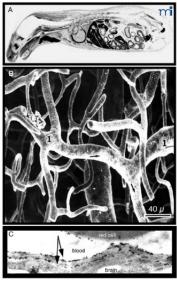
Receptors:

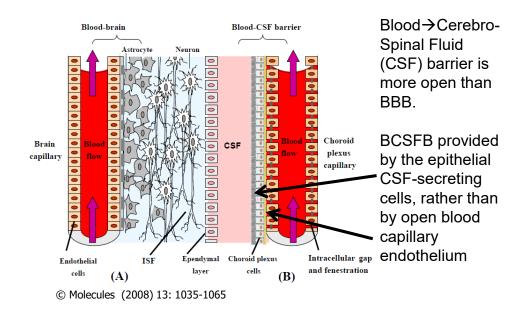

- Neonatal Fc receptor (FcRn, FcGRT)
- Polymeric Ig receptor (PIGR)
- Lactoferrin receptor (ITLN-1)
- Intrinsic factor receptor (CUBN, AMN)
- Bacterial toxin receptors

Ligand:

- Fc tail region of IgG antibody
- plgA
- Lactoferrin
- Vitamin B12 , folate
- Shiga & some cholera toxins

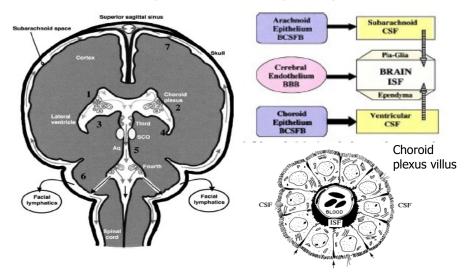
Example: Vitamin B12 – nanoparticle transcytosis across lung epithelial cells


- B12-conjugated NPs (50 nm, with IF) B12-conjugated NPs (50 nm, without IF) NP flux very low Nanoparticle transport (µg/cm²) 18 B12-conjugated NPs (100 nm, with IF) B12-conjugated NPs (100 nm, with IF) unmodified NPs (50 nm) unmodified NP (100 nm) - 0.047 ng/s/cm² 16 14 • B_{12} – NP flux >25x higher 12 - 1.263 ng/s/cm² 10 Blocked by endocytosis 8 inhibitors 6 4 – chlorpromazine 2 (0.032)0
 - filipin (0.027)


© 2013 Fowler et al. J. Controlled Release 172: 374–381

Need for drug targeting to brain

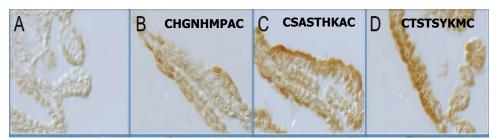
- Drug discovery falling behind • advances in néuroscience :
 - 98% (pharma) drugs do not cross the blood brain barrier (BBB).
- Only small molecules with high lipid solubility and a low MW <400–500Da • cross, but few diseases respond:
 - depression, chronic pain, epilepsy.
- Many conventional lipid-soluble-low-MW small-molecule drugs do not cross eg images across
 - A. penetration of all areas except brain in mouse
 - B. blood vessels 40 microns apart, 1 capillary per 1-2 neurones
 - C. blood brain



© Molecular Interventions (2003) 3(2): 90

Relevance of Blood-CSF as well as BBB

Cerebrospinal fluid (CSF) route

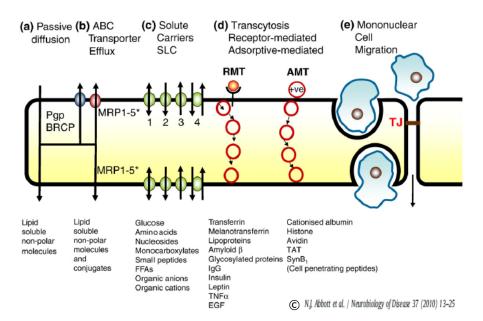

© Pharmaceutical Research (2005) 22 (7): 1011

Choroid plexus (CP)

- Initial transport from blood-to-CSF not rate-limiting as in BBB.
- Choroidal vascular perfusion 5-10x mean cerebral blood flow.
- Total area for transport by the four CPs is many fold less but of the same order of magnitude as BBB.
- Macro-circulation ensures the entire CSF volume (140ml in man) secreted from and excreted back into blood every 4-5h.
- Virtually all small and large molecules in blood penetrate into CSF, at a rate inversely related to the molecular weight, but CP epithelial protection against pharma drugs (drug efflux & drug metabolism)
- Injections into CSF diffuse into brain by <0.5mm for large & 1-2mm for small molecules (*ie* not all brain) before clearance.
- Micro-circulation from CSF into brain parenchyma ~20x less than above macro-circulation exchange of CSF.
- Higher and sustained blood drug levels needed for BCSFB.

Example: CP targeting peptides

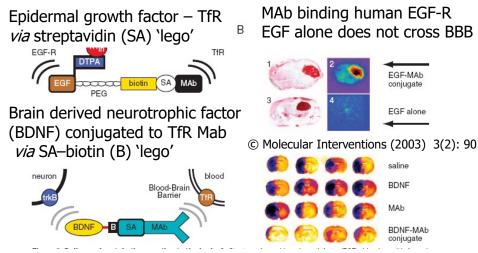
 Phage display library 'bio-panning' approach to identify peptides homing to choroid plexus and taken up by CP epithelial cells



© Gonzalez et al. BMC Neuroscience 2011, 12:4

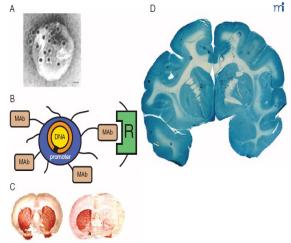
Example: CP folate transcytosis

Folate Choroid plexus Ependyma transcytosis Neuron Lateral ventricle Cerebrum across CP Astrocvt epithelia secreting 0 0 Ο U Epe C exosomes P Exosomes 0 into CSF CSF Apical Third ventricle **Exosomes** Choroid plexus Tight epithelial cell Choroid plexus unction distribute into Cerebellum Fourth ventricle brain GEE Blood Basolateral


Transport across blood brain barrier (BBB)

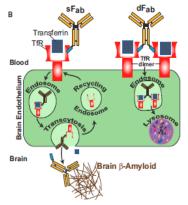
Endocytosis at BBB

- low fluid phase endocytosis
- higher adsorptive endocytosis
- extensive receptor-mediated endocytosis:
 - transferrin iron uptake uses apical membrane recycling of transferrin receptor (TfR) and associated transcytosis via basal membrane
 - leptin regulates food intake (obesity factor), including by transcytosis into brain to trigger release of neuropeptides from hypothalmus
 - insulin facilitates glucose transport via insulin receptor in many tissues except brain, though insulin transcytosis across BBB arises by RME
 - cytokines, although produced in brain, also appear to transcytose across BBB by RME eg IL-1, TNF


Example: early protein / NP across BBB

No reduction in stroke volume with BDNF alone, does not cross BBB, even in the infarcted region of brain. 65% reduction in stroke volume with BDNF chimeric peptide

Example: non-viral gene delivery to primate brain

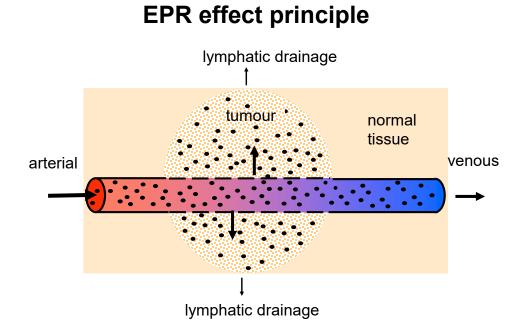

- A. PEG immunoliposome (PIL):
- IgG –PEG binds gold NP second antibody.
- **B.** Plasmid DNA encapsulated in PIL
- conjugated with a receptor (R)-specific targeting Mab
- PEG inhibits uptake of PIL by reticuloendothelial system
- **C.** Tissue-specific gene expression *in vivo*,
- **D.** greater in grey over white matter

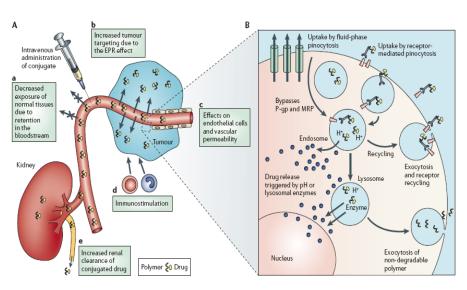
© Molecular Interventions (2003) 3(2): 90

Example: Roche 'Brain Shuttle'

Roche anti-TfR sFab 'Brain Shuttle'

C Neuron 81, January 8, 2014 ©2014 Elsevier Inc.

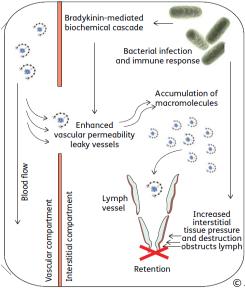

Differential intracellular sorting:


- monovalent anti-TfR sFab fusions undergo transcytosis across the BBB
- bivalent anti-TfR dFab fusions lead to TfR dimerisation and lysosomal degradation

http://www.youtube.com/watch?feature=player_detailpage&v=TfJBwoQNaaw

EPR effect

- Enhanced permeability & retention (EPR) effect: mainly size-based selective accumulation of nanoparticles in diseased tissue:
- 1) Stealth modification (*eg* PEG combs) or Fc receptor recycling and <100 nm nanoparticles improves circulation time by reducing clearance rate by reticuloendothelial system (RES)
- Vascular leakiness allows extravasation (escape) of nanoparticles across inflamed (infection) and diseased (tumour) tissue capillaries via 'feaky' junctions between capillary endothelial cells
- 3) Lower rate of penetration of nanoparticles through extracellular matrices between cells in the tissue;
- 4) Lower rate of lymphatic drainage and clearance of nanoparticles from diseased tissue (cf small molecules).



Example: polymer drug conjugates

© NATURE REVIEWS | CANCER (2006) 6: 688-698

EPR targeting of infection/inflammation sites

Enhanced permeability retention (EPR) effect:

- increased vascular permeability (*eg* inflammation - vasodilation, NO, proteases/bradykinin ...)
- Decreased lymphatic drainage – increased interstitial pressure reduces lymphatic permeability
- Accumulation of nanoparticles in infected tissue

© J Antimicrob Chemother (2010) doi:10.1093/jac/dks379