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Intended Learning Outcomes

To be aware of the wide range nanomedicines and to
understand the principles underlying their different
behaviours in the body, which are developed in more
detail:

L2 as diagnostic contrast agents

L3-4 at epithelial barriers (gut, skin & lung RoAs)

L5-6 as reasons for success of biologics & nanoparticles
L7-8 for overcoming membrane barriers & targeting
L9-10 for overcoming drug-resistant infections

(Moscow: RNA targeting for different diseases)
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Nano size scales & Nanomedicines
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Nanomedicines: targeted therapeutics
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Why size is important — PK & biodistribution:
particle sizes and delivery barriers
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Fate of nanoparticles in the body:
size, charge, hydrophobicity
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Smaller scale nanomedicines
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Larger scale nanomedicine
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Liposome for Drug Delivery

DNA, RNA

Protective layer against
immune destruction

Drug crystallized
in aqueous fluid

I Lipid-soluble
drug in bilayer

Lipid self-assembly structures

Critical packing parameter: P =V / (a.l)
[V = tail volume, | = tail length, a = area at interface]
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ACS Nano 2017, 11, 7572-7586
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Amphiphile shape, assembly & curvature
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Liposome: packing & stabilisation

cholestero

Vesicle physical stability also increased by

* high phase transition temperature lipids

* polymer-supported lipids (lipid membrane-coated particles)
* lipid-like polymer vesicles (polymersomes)
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Liposome stabilisation against disruption by
serum proteins

Serum high density lipoproteins (HDL) bind lipids,
particularly from less rigid or unstable liposomes, leading
to their disintegration, releasing drugs too soon.

Lipid compositions increasing physical rigidity and stability:
high gel-liquid transition temperature (T.) lipids

Gel phase Fluid phase
Temperature

iz — T

high cholesterol, high saturation, longer alkyl chains

dipalmityl phosphatidylcholine (DPPC): gel <33°C — fluid >42°C
sphingomyelin, ceramide
perfluoroalkylated phospholipids (eg lung aerosol delivery)

Polymersome: structure & stability
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Stability increases with membrane thickness to limit set by elasticity (y).
Water permeation through polymerosome membranes considerably
reduced compared with phospholipid liposome membranes.
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Natural vesicles made from cells
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L2: Near patient diagnostics & imaging

Intended Learning Outcomes

* To be aware of how nanotechnology is advancing
near patient or point of care (POC) diagnostics
(Dx) and body imaging technologies

* To understand how different types of
nanoparticles & related nanostructures on
surfaces make very small signals bright enough to
see
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Scope

The science, technology & practice of diagnostics
and imaging are considerable — much greater
than pharmaceuticals.

In vitro diagnostics: In vivo diagnostics:

* Consumer Dx * Implanted sensors

* Point of care Dx * Worn sensors

* Drug monitoring * Portable imaging

* Biomarkers * Whole body imaging

* Bioimaging
* Laboratory analysers

What does Nano do for diagnostics?

* Diagnostics (Dx) often face challenges much greater than
‘finding a needle in a hay stack’

* Few analytes in the body are at sufficient levels to see
directly, when lost in the large range of similar
compounds or high levels of materials in the body

Nanoscience used to make capture and contrast agents,
often using nanoparticle assemblies:

* Capture agents - grab the analyte, so sufficient to see or
recover from a sample to measure

* Contrast agents - light up the analyte, so that remote
measurements (eg imaging scanners) can see it

Dx NPs similar or more advanced than pharmaceutical NPs
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IVD: consumer, point of care Dx —some
examples

* Magnetic nanoparticles

* Miniaturized NMR

* Gold nanoparticles

e Semiconductor nanoparticles — quantum dots
* Biosensors

 Surface plasmon resonance

* Nanosight

* Photoacoustic

Example: (para)magnetic particles

N
Adsorbent
- Bacteria detection
v Cell trapping
Antibodies
Immunocassay

Infectious Disease Test
Magr‘!e " Fluorescence
arti “ labeling
DNA analysis
‘ / {Fluorescent
bar-corded)

DNA probes \ , ‘ F

SNPs analysis {tL'
Gene diagnostic test

. Proteins
Proteome analysis

P-

Sample + Washing Elution
magnetic beads

- Magnetic bead
< Target

23/10/2017

11



23/10/2017

Magnetism
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Gold / Au NPs

Lateral Flow Assay Architecture
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Example: biosensors
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Example: surface plasmon resonance
(SPR) sensor and NP sensors
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Nanosight
(making nano visible to a simple camera)

Microscope
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Diagnhostic imaging & NPs
Imaging using nanoparticles as selective and
highly-visible contrast agents:
* Magnetic resonance imaging (MRI)
* Positron emission tomography (PET)
* Photoacoustic
* Raman
* Fluorescence
* Multi-modal imaging (combining above)
* Theranostic : Dx = Rx targeted therapy

MRI scanner
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Spin lattice T1 &
transverse T2 relaxation

Water dominates the relatively-low B magnetic field of
the NMR in MRI unless paramagnetic image contrast
NPs used, which change the relaxation time (T)
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MRI image contrast:
biodistribution strongly affected by size

olinium

T1 relaxation —bright (+ve) contrast chelate
* Gd chelated to minimize its toxicity
T2 relaxation — dark (-ve) contrast

* iron oxide dextran NPs

* superparamagnetic NPs

Dual - T1 MnFe,0, & T2 Gd,0(CO;),

* minimizes artefacts

Liposomes
- \

* versatility-T1 & T2

* targeting

© Int J Nanomed (2015) 10: 1727-41
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Photoacoustic scanning imaging
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Surface enhanced Raman scattering (SERS)

Unenhanced Nanuparticles Surfaces Tips Eflelti{(r Metal
?\sphere T

&“’ % mj, / 4//’
\ % % % &

Raman scattering signals are weak but increased by orders
of magnitude for molecules in plasmon resonance field
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Multiple modality imaging
eg brain tumor
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NP imaging / therapy modalities
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